Absorbing-state phase transitions in fixed-energy sandpiles

We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta (c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simu...

Full description

Bibliographic Details
Published:
Online Access:http://hdl.handle.net/2047/d20002164
Description
Summary:We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta (c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to identify the universality classes of such models, in hopes of assessing the validity of two recently proposed approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a mapping to driven interface dynamics in random media.