Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana

This thesis is the first to the author's knowledge to conduct a holistic investigation of the physical, chemical and microbial properties of a rock glacier. The Lone Peak Rock Glacier (LPRG) is located in the Madison Range of southwest Montana on Big Sky Resort property. This thesis focuses on...

Full description

Bibliographic Details
Main Author: Florentine, Caitlyn Elizabeth
Language:en
Published: 2011
Online Access:http://etd.lib.montana.edu/etd/2011/florentine/FlorentineC0511.pdf
id ndltd-MONTSTATE-http---etd.lib.montana.edu-etd-2011-florentine-FlorentineC0511.pdf
record_format oai_dc
spelling ndltd-MONTSTATE-http---etd.lib.montana.edu-etd-2011-florentine-FlorentineC0511.pdf2012-07-03T13:19:55Z Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana Florentine, Caitlyn Elizabeth This thesis is the first to the author's knowledge to conduct a holistic investigation of the physical, chemical and microbial properties of a rock glacier. The Lone Peak Rock Glacier (LPRG) is located in the Madison Range of southwest Montana on Big Sky Resort property. This thesis focuses on three scales of investigation: regional, landform, and micro. Regional-scale analysis assessed the role of geology and topography as factors in determining rock-glacier distribution in SW Montana above 2000m. Rock glaciers across alpine landscapes in southwest Montana are preferentially distributed according to rock type, with more rock glaciers occurring in intrusive, foliated intrusive and metamorphic catchments relative to the areal proportion of these rock types than in extrusive and sedimentary catchments. This preferential distribution according to catchment geology is likely due to the affect that geology has on topography and provision of talus. Landform-scale analysis focuses on internal structure, flow dynamics and surface topography of the LPRG. The relationship between surface topography and subsurface structure is explained by passive roof duplex faulting. This finding has implications for rock-glacier flow dynamics and the development of transverse ridges, a common surface feature of rock glaciers studied worldwide. Micro-scale analysis characterizes microbiological and geochemical properties of rock-glacier ice and evaluates it as a microbial habitat, exploring potential associations between debris content and microbial activity. Amber ice (containing 0.1% debris by weight) appears to be a more suitable microbial environment than debris-poor ice (containing < 0.01% debris). This finding highlights the importance of debris as a potential nutrient and energy source to enhance microbial viability in rock-glacier ice. 'Co-authored by Mark Skidmore, Marvin Speece, Curtis Link, William Locke, Christina Carr, Colin Shaw and Scott Montross .' 2011-05-15 Thesis Montana State University en http://etd.lib.montana.edu/etd/2011/florentine/FlorentineC0511.pdf
collection NDLTD
language en
sources NDLTD
description This thesis is the first to the author's knowledge to conduct a holistic investigation of the physical, chemical and microbial properties of a rock glacier. The Lone Peak Rock Glacier (LPRG) is located in the Madison Range of southwest Montana on Big Sky Resort property. This thesis focuses on three scales of investigation: regional, landform, and micro. Regional-scale analysis assessed the role of geology and topography as factors in determining rock-glacier distribution in SW Montana above 2000m. Rock glaciers across alpine landscapes in southwest Montana are preferentially distributed according to rock type, with more rock glaciers occurring in intrusive, foliated intrusive and metamorphic catchments relative to the areal proportion of these rock types than in extrusive and sedimentary catchments. This preferential distribution according to catchment geology is likely due to the affect that geology has on topography and provision of talus. Landform-scale analysis focuses on internal structure, flow dynamics and surface topography of the LPRG. The relationship between surface topography and subsurface structure is explained by passive roof duplex faulting. This finding has implications for rock-glacier flow dynamics and the development of transverse ridges, a common surface feature of rock glaciers studied worldwide. Micro-scale analysis characterizes microbiological and geochemical properties of rock-glacier ice and evaluates it as a microbial habitat, exploring potential associations between debris content and microbial activity. Amber ice (containing 0.1% debris by weight) appears to be a more suitable microbial environment than debris-poor ice (containing < 0.01% debris). This finding highlights the importance of debris as a potential nutrient and energy source to enhance microbial viability in rock-glacier ice. 'Co-authored by Mark Skidmore, Marvin Speece, Curtis Link, William Locke, Christina Carr, Colin Shaw and Scott Montross .'
author Florentine, Caitlyn Elizabeth
spellingShingle Florentine, Caitlyn Elizabeth
Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
author_facet Florentine, Caitlyn Elizabeth
author_sort Florentine, Caitlyn Elizabeth
title Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
title_short Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
title_full Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
title_fullStr Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
title_full_unstemmed Regional context, internal structure, and microbiological investigation of the Lone Peak Rock Glacier, Big Sky, Montana
title_sort regional context, internal structure, and microbiological investigation of the lone peak rock glacier, big sky, montana
publishDate 2011
url http://etd.lib.montana.edu/etd/2011/florentine/FlorentineC0511.pdf
work_keys_str_mv AT florentinecaitlynelizabeth regionalcontextinternalstructureandmicrobiologicalinvestigationofthelonepeakrockglacierbigskymontana
_version_ 1716392091906473984