An integrated CRISPR-Cas toolkit for engineering human cells

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-su...

Full description

Bibliographic Details
Main Author: Perli, Samuel David
Other Authors: Timothy K. Lu.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/99781
id ndltd-MIT-oai-dspace.mit.edu-1721.1-99781
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-997812019-05-02T16:31:37Z An integrated CRISPR-Cas toolkit for engineering human cells Perli, Samuel David Timothy K. Lu. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 145-158). Natively functioning Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) system is a prokaryotic adaptive immune system that confers resistance to foreign genetic elements including plasmids and phages. Very recently, a two-component CRISPR-Cas technology from Streptococcus Pyogenes comprising of the RNA-guided DNA endonuclease Cas9 and the guide RNA (gRNA) has been demonstrated to enable unprecedented genome editing efficiency across all domains of life. Current applications however, employ CRISPR/Cas technology in a stand-alone fashion, isolated from the rich biological machinery of the host environment in which it is applied. In this thesis, I present a toolkit designed by integrating CRISPR/Cas technology with a wide array of mammalian molecular components, thereby enabling altogether novel applications while enhancing the efficiency of current applications. By integrating a catalytically dead version of the CRISPR/Cas protein Cas9 (dCas9) with mammalian transcriptional activator VP64 and mammalian transcriptional repressor KRAB, we build and characterize tunable, multifunctional and orthogonal CRISPR/Cas transcription factors (CRISPR-TFs) in human cells. By integrating CRISPR-TFs and Cas6/Csy4 based RNA processing with multiple mammalian RNA regulatory strategies including RNA Polymerase II (RNAP II) promoters, RNAtriple- helix structures, introns, microRNAs and ribozymes, we demonstrate efficient modulation of endogenous promoters and the implementation of tunable synthetic circuits such as multistage cascades and RNA-dependent networks that can be rewired with Csy4. In summary, our integrated toolkit enables efficient and multiplexed modulation of endogenous gene networks, construction of highly scalable and tunable synthetic gene circuits. Our toolkit can be used for perturbing endogenous networks towards developmental, therapeutic and synthetic biology applications. by Samuel David Perli. Ph. D. 2015-11-09T19:12:40Z 2015-11-09T19:12:40Z 2015 2015 Thesis http://hdl.handle.net/1721.1/99781 927411404 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 158 pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Electrical Engineering and Computer Science.
spellingShingle Electrical Engineering and Computer Science.
Perli, Samuel David
An integrated CRISPR-Cas toolkit for engineering human cells
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 145-158). === Natively functioning Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) system is a prokaryotic adaptive immune system that confers resistance to foreign genetic elements including plasmids and phages. Very recently, a two-component CRISPR-Cas technology from Streptococcus Pyogenes comprising of the RNA-guided DNA endonuclease Cas9 and the guide RNA (gRNA) has been demonstrated to enable unprecedented genome editing efficiency across all domains of life. Current applications however, employ CRISPR/Cas technology in a stand-alone fashion, isolated from the rich biological machinery of the host environment in which it is applied. In this thesis, I present a toolkit designed by integrating CRISPR/Cas technology with a wide array of mammalian molecular components, thereby enabling altogether novel applications while enhancing the efficiency of current applications. By integrating a catalytically dead version of the CRISPR/Cas protein Cas9 (dCas9) with mammalian transcriptional activator VP64 and mammalian transcriptional repressor KRAB, we build and characterize tunable, multifunctional and orthogonal CRISPR/Cas transcription factors (CRISPR-TFs) in human cells. By integrating CRISPR-TFs and Cas6/Csy4 based RNA processing with multiple mammalian RNA regulatory strategies including RNA Polymerase II (RNAP II) promoters, RNAtriple- helix structures, introns, microRNAs and ribozymes, we demonstrate efficient modulation of endogenous promoters and the implementation of tunable synthetic circuits such as multistage cascades and RNA-dependent networks that can be rewired with Csy4. In summary, our integrated toolkit enables efficient and multiplexed modulation of endogenous gene networks, construction of highly scalable and tunable synthetic gene circuits. Our toolkit can be used for perturbing endogenous networks towards developmental, therapeutic and synthetic biology applications. === by Samuel David Perli. === Ph. D.
author2 Timothy K. Lu.
author_facet Timothy K. Lu.
Perli, Samuel David
author Perli, Samuel David
author_sort Perli, Samuel David
title An integrated CRISPR-Cas toolkit for engineering human cells
title_short An integrated CRISPR-Cas toolkit for engineering human cells
title_full An integrated CRISPR-Cas toolkit for engineering human cells
title_fullStr An integrated CRISPR-Cas toolkit for engineering human cells
title_full_unstemmed An integrated CRISPR-Cas toolkit for engineering human cells
title_sort integrated crispr-cas toolkit for engineering human cells
publisher Massachusetts Institute of Technology
publishDate 2015
url http://hdl.handle.net/1721.1/99781
work_keys_str_mv AT perlisamueldavid anintegratedcrisprcastoolkitforengineeringhumancells
AT perlisamueldavid integratedcrisprcastoolkitforengineeringhumancells
_version_ 1719042683467464704