Multiscale modeling and estimation of large-scale dynamic systems
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998. === Includes bibliographical references (p. 247-257). === Statistical modeling and estimation of large-scale dynamic systems is important in a wide range of scientific applications. Co...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Massachusetts Institute of Technology
2005
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/9632 |
id |
ndltd-MIT-oai-dspace.mit.edu-1721.1-9632 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-MIT-oai-dspace.mit.edu-1721.1-96322020-07-15T07:09:31Z Multiscale modeling and estimation of large-scale dynamic systems Ho, Terrence Tian-Jian Alan S. Willsky. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Electrical Engineering and Computer Science Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998. Includes bibliographical references (p. 247-257). Statistical modeling and estimation of large-scale dynamic systems is important in a wide range of scientific applications. Conventional optimal estimation methods, however, are impractical due to their computational complexity. In this thesis, we consider an alternative multiscale modeling framework first developed by Basseville, Willsky, et al. [6, 18]. This multiscale estimation methodology has been successfully applied to a number of large-scale static estimation problems, one of which is the application of the socalled 1/ f multiscale models to the mapping of ocean surface height from satellite altimetric measurements. A modified 1/ f model is used in this thesis to jointly estimate the surface height of the Mediterranean Sea and the correlated component of the measurement noise in order to remove the artifacts apparent in maps generated with the more simplistic assumption that the measurement noise is white. The main contribution of this thesis is the extension of the multiscale framework to dynamic estimation. We introduce a recursive procedure that propagates a multiscale model for the estimation errors in a manner analogous to, but more efficient than, the Kalman filter's propagation of the error covariances. With appropriately chosen multiscale models, such as the new class of non-redundant models that we introduce, the computational gain can be substantial. We use 1-D and 2-D diffusion processes to illustrate the development of our algorithm. The resulting multiscale estimators achieve O(N) computational complexity with near-optimal performance in 1-D and 0 (N312) in 2-D, as compared to the O (N3) complexity of the standard Kalman filter. by Terrence Tian-Jian Ho. Ph.D. 2005-08-19T19:04:18Z 2005-08-19T19:04:18Z 1998 1998 Thesis http://hdl.handle.net/1721.1/9632 42333578 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 257 p. 20956004 bytes 20955761 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Electrical Engineering and Computer Science |
spellingShingle |
Electrical Engineering and Computer Science Ho, Terrence Tian-Jian Multiscale modeling and estimation of large-scale dynamic systems |
description |
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998. === Includes bibliographical references (p. 247-257). === Statistical modeling and estimation of large-scale dynamic systems is important in a wide range of scientific applications. Conventional optimal estimation methods, however, are impractical due to their computational complexity. In this thesis, we consider an alternative multiscale modeling framework first developed by Basseville, Willsky, et al. [6, 18]. This multiscale estimation methodology has been successfully applied to a number of large-scale static estimation problems, one of which is the application of the socalled 1/ f multiscale models to the mapping of ocean surface height from satellite altimetric measurements. A modified 1/ f model is used in this thesis to jointly estimate the surface height of the Mediterranean Sea and the correlated component of the measurement noise in order to remove the artifacts apparent in maps generated with the more simplistic assumption that the measurement noise is white. The main contribution of this thesis is the extension of the multiscale framework to dynamic estimation. We introduce a recursive procedure that propagates a multiscale model for the estimation errors in a manner analogous to, but more efficient than, the Kalman filter's propagation of the error covariances. With appropriately chosen multiscale models, such as the new class of non-redundant models that we introduce, the computational gain can be substantial. We use 1-D and 2-D diffusion processes to illustrate the development of our algorithm. The resulting multiscale estimators achieve O(N) computational complexity with near-optimal performance in 1-D and 0 (N312) in 2-D, as compared to the O (N3) complexity of the standard Kalman filter. === by Terrence Tian-Jian Ho. === Ph.D. |
author2 |
Alan S. Willsky. |
author_facet |
Alan S. Willsky. Ho, Terrence Tian-Jian |
author |
Ho, Terrence Tian-Jian |
author_sort |
Ho, Terrence Tian-Jian |
title |
Multiscale modeling and estimation of large-scale dynamic systems |
title_short |
Multiscale modeling and estimation of large-scale dynamic systems |
title_full |
Multiscale modeling and estimation of large-scale dynamic systems |
title_fullStr |
Multiscale modeling and estimation of large-scale dynamic systems |
title_full_unstemmed |
Multiscale modeling and estimation of large-scale dynamic systems |
title_sort |
multiscale modeling and estimation of large-scale dynamic systems |
publisher |
Massachusetts Institute of Technology |
publishDate |
2005 |
url |
http://hdl.handle.net/1721.1/9632 |
work_keys_str_mv |
AT hoterrencetianjian multiscalemodelingandestimationoflargescaledynamicsystems |
_version_ |
1719326094098694144 |