Polynomial policies in supply chain networks
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010. === Cataloged from PDF version of thesis. === Includes bibliographical references (p. 63-64). === This thesis aims to solve the periodic-reviewed inventory control problem in supply chain net...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Massachusetts Institute of Technology
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/61893 |
id |
ndltd-MIT-oai-dspace.mit.edu-1721.1-61893 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-MIT-oai-dspace.mit.edu-1721.1-618932019-05-02T16:25:54Z Polynomial policies in supply chain networks He, Liwei Dimitris Bertsimas. Massachusetts Institute of Technology. Computation for Design and Optimization Program. Massachusetts Institute of Technology. Computation for Design and Optimization Program. Computation for Design and Optimization Program. Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 63-64). This thesis aims to solve the periodic-reviewed inventory control problem in supply chain networks with uncertain demand so as to minimize the overall cost of the system over a fixed planning time horizon. In such problems, one seeks to optimally determine ordering quantities at different stages in time. We investigate the class of polynomial policies, where the control policy is directly parametrized polynomially in the observed uncertainties of previous stages. We use sum-of-square relaxations to reformulate the problem into a single semidefinite optimization problem for a specific polynomial degree. We consider both robust and stochastic approaches in order to address the uncertainties in demand. In extensive numerical studies, we find that polynomial policies exhibit better performance over basestock policies across a variety of networks and demand distributions under the mean and standard deviation criteria. However, when the uncertainty set turns out to be larger than planned, basestock policies start outperforming polynomial policies. Comparing the policies obtained under the robust and stochastic frameworks, we find that they are comparable in the average performance criterion, but the robust approach leads to better tail behavior and lower standard deviation in general. by Liwei He. S.M. 2011-03-24T20:22:46Z 2011-03-24T20:22:46Z 2010 2010 Thesis http://hdl.handle.net/1721.1/61893 706804893 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 64 p. application/pdf Massachusetts Institute of Technology |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computation for Design and Optimization Program. |
spellingShingle |
Computation for Design and Optimization Program. He, Liwei Polynomial policies in supply chain networks |
description |
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010. === Cataloged from PDF version of thesis. === Includes bibliographical references (p. 63-64). === This thesis aims to solve the periodic-reviewed inventory control problem in supply chain networks with uncertain demand so as to minimize the overall cost of the system over a fixed planning time horizon. In such problems, one seeks to optimally determine ordering quantities at different stages in time. We investigate the class of polynomial policies, where the control policy is directly parametrized polynomially in the observed uncertainties of previous stages. We use sum-of-square relaxations to reformulate the problem into a single semidefinite optimization problem for a specific polynomial degree. We consider both robust and stochastic approaches in order to address the uncertainties in demand. In extensive numerical studies, we find that polynomial policies exhibit better performance over basestock policies across a variety of networks and demand distributions under the mean and standard deviation criteria. However, when the uncertainty set turns out to be larger than planned, basestock policies start outperforming polynomial policies. Comparing the policies obtained under the robust and stochastic frameworks, we find that they are comparable in the average performance criterion, but the robust approach leads to better tail behavior and lower standard deviation in general. === by Liwei He. === S.M. |
author2 |
Dimitris Bertsimas. |
author_facet |
Dimitris Bertsimas. He, Liwei |
author |
He, Liwei |
author_sort |
He, Liwei |
title |
Polynomial policies in supply chain networks |
title_short |
Polynomial policies in supply chain networks |
title_full |
Polynomial policies in supply chain networks |
title_fullStr |
Polynomial policies in supply chain networks |
title_full_unstemmed |
Polynomial policies in supply chain networks |
title_sort |
polynomial policies in supply chain networks |
publisher |
Massachusetts Institute of Technology |
publishDate |
2011 |
url |
http://hdl.handle.net/1721.1/61893 |
work_keys_str_mv |
AT heliwei polynomialpoliciesinsupplychainnetworks |
_version_ |
1719040469014413312 |