Meaning and compositionality as statistical induction of categories and constraints

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009. === "September 2009." Cataloged from PDF version of thesis. === Includes bibliographical references (p. 191-201). === What do words and phrases mean? How do we infer their meaning in a give...

Full description

Bibliographic Details
Main Author: Schmidt, Lauren A
Other Authors: Joshua Tenenbaum.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/54624
id ndltd-MIT-oai-dspace.mit.edu-1721.1-54624
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-546242019-05-02T16:09:20Z Meaning and compositionality as statistical induction of categories and constraints Schmidt, Lauren A Joshua Tenenbaum. Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences. Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences. Brain and Cognitive Sciences. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009. "September 2009." Cataloged from PDF version of thesis. Includes bibliographical references (p. 191-201). What do words and phrases mean? How do we infer their meaning in a given context? How do we know which sets of words have sensible meanings when combined, as opposed to being nonsense? As language learners and speakers, we can solve these problems starting at a young age, but as scientists, our understanding of these processes is limited. This thesis seeks to address these questions using a computational approach. Bayesian modeling provides a method of combining categories and logical constraints with probabilistic inference, yielding word and phrase meanings that involve graded category memberships and are governed by probabilistically inferred structures. The Bayesian approach also allows an investigation to separately identify the prior beliefs a language user brings to a particular situation involving meaning-based inference (e.g., learning a word meaning or identifying which objects an adjective applies to within a given context), and to identify what the language user can infer from the context. This approach therefore provides the foundation also for investigations of how different prior beliefs affect what a language user infers in a given situation, and how prior beliefs can develop over time. Using a computational approach, I address the following questions: (1) How do people generalize about a word's meaning from limited evidence? (2) How do people understand and use phrases, particularly when some of the words in those phrases depend on context for interpretation? (3) How do people know and learn which combinations of predicates and noun phrases can sensibly be combined and which are nonsensical? (cont.) I show how each of these topics involves the probabilistic induction of categories, and I examine the constraints on inference in each domain. I also explore which of these constraints may themselves be learned. by Lauren A. Schmidt. Ph.D. 2010-04-28T17:11:12Z 2010-04-28T17:11:12Z 2009 Thesis http://hdl.handle.net/1721.1/54624 601820947 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 201 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Brain and Cognitive Sciences.
spellingShingle Brain and Cognitive Sciences.
Schmidt, Lauren A
Meaning and compositionality as statistical induction of categories and constraints
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009. === "September 2009." Cataloged from PDF version of thesis. === Includes bibliographical references (p. 191-201). === What do words and phrases mean? How do we infer their meaning in a given context? How do we know which sets of words have sensible meanings when combined, as opposed to being nonsense? As language learners and speakers, we can solve these problems starting at a young age, but as scientists, our understanding of these processes is limited. This thesis seeks to address these questions using a computational approach. Bayesian modeling provides a method of combining categories and logical constraints with probabilistic inference, yielding word and phrase meanings that involve graded category memberships and are governed by probabilistically inferred structures. The Bayesian approach also allows an investigation to separately identify the prior beliefs a language user brings to a particular situation involving meaning-based inference (e.g., learning a word meaning or identifying which objects an adjective applies to within a given context), and to identify what the language user can infer from the context. This approach therefore provides the foundation also for investigations of how different prior beliefs affect what a language user infers in a given situation, and how prior beliefs can develop over time. Using a computational approach, I address the following questions: (1) How do people generalize about a word's meaning from limited evidence? (2) How do people understand and use phrases, particularly when some of the words in those phrases depend on context for interpretation? (3) How do people know and learn which combinations of predicates and noun phrases can sensibly be combined and which are nonsensical? === (cont.) I show how each of these topics involves the probabilistic induction of categories, and I examine the constraints on inference in each domain. I also explore which of these constraints may themselves be learned. === by Lauren A. Schmidt. === Ph.D.
author2 Joshua Tenenbaum.
author_facet Joshua Tenenbaum.
Schmidt, Lauren A
author Schmidt, Lauren A
author_sort Schmidt, Lauren A
title Meaning and compositionality as statistical induction of categories and constraints
title_short Meaning and compositionality as statistical induction of categories and constraints
title_full Meaning and compositionality as statistical induction of categories and constraints
title_fullStr Meaning and compositionality as statistical induction of categories and constraints
title_full_unstemmed Meaning and compositionality as statistical induction of categories and constraints
title_sort meaning and compositionality as statistical induction of categories and constraints
publisher Massachusetts Institute of Technology
publishDate 2010
url http://hdl.handle.net/1721.1/54624
work_keys_str_mv AT schmidtlaurena meaningandcompositionalityasstatisticalinductionofcategoriesandconstraints
_version_ 1719035588030496768