Experimental study of a high efficiency gyrotron oscillator

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2007. === Includes bibliographical references (p. 185-193). === High power, high frequency gyrotrons used in plasma heating must achieve the highest possible efficiency in order to reduce system size and cost and to minimize t...

Full description

Bibliographic Details
Main Author: Choi, Eunmi, Ph. D. Massachusetts Institute of Technology
Other Authors: Richard J. Temkin.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://hdl.handle.net/1721.1/45418
id ndltd-MIT-oai-dspace.mit.edu-1721.1-45418
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-454182019-05-02T16:14:26Z Experimental study of a high efficiency gyrotron oscillator Choi, Eunmi, Ph. D. Massachusetts Institute of Technology Richard J. Temkin. Massachusetts Institute of Technology. Dept. of Physics. Massachusetts Institute of Technology. Dept. of Physics. Physics. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2007. Includes bibliographical references (p. 185-193). High power, high frequency gyrotrons used in plasma heating must achieve the highest possible efficiency in order to reduce system size and cost and to minimize thermal and mechanical problems. This thesis presents an experimental study of efficiency enhancement in a 1.5 MW, 110 GHz gyrotron oscillator, which operated at 50 % efficiency with a single-stage depressed collector. We present the design and detailed experimental results of a new low ohmic loss cavity, a four-mirror internal mode converter and a single-stage depressed collector. The low ohmic loss TE22,6 cavity, designated "V-2005", was designed using the code MAGY to have a Q factor of 830, which would be suitable for CW operation in an industrial gyrotron. The cavity was first tested in the axial configuration, in which the output waveguide also serves as the electron beam collector. In 3 microsecond pulsed operation at 97 kV and 40 A, an output power of 1.67 MW at an efficiency of 42 % was obtained without a depressed collector. The V-2005 cavity efficiency exceeds that of the older "V-2003" cavity by 5 percentage points. The enhanced efficiency of the V-2005 cavity may be understood by analyzing the start-up scenario of the cavities. During start-up, the V-2003 cavity suffers from strong mode competition with the TE19,7 mode, resulting in a relatively low efficiency, while the V-2005 cavity has an absence of such mode competition. The experimental mode maps (regions of oscillation vs. magnetic field) obtained for the two cavities are in excellent agreement with the start-up simulations. Following the axial configuration experiments, the experiment was rebuilt with an internal mode converter consisting of a launcher and 4 mirrors, and with a single-stage depressed collector. An output power of 1.5 MW was measured. The internal mode converter operated at 90 % efficiency. When the depressed collector was run at 25 kV, an overall efficiency of 50 % was achieved. An aftercavity interaction (ACI) was investigated as a possible cause of efficiency reduction in the gyrotron. (cont.) The ACI occurs when the spent electron beam interacts at cyclotron resonance with the traveling output microwave beam in a region of lower magnetic field just after the cavity. The presence of the ACI was identified from the comparison between simulation results and the measurement of the depression voltage as a function of beam current. Future research should consider ways of eliminating the ACI, ways of improving the internal mode converter, and the use of a two-stage depressed collector. by Eunmi Choi. Ph.D. 2009-04-29T17:39:06Z 2009-04-29T17:39:06Z 2007 2007 Thesis http://hdl.handle.net/1721.1/45418 317629869 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 193 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Physics.
spellingShingle Physics.
Choi, Eunmi, Ph. D. Massachusetts Institute of Technology
Experimental study of a high efficiency gyrotron oscillator
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2007. === Includes bibliographical references (p. 185-193). === High power, high frequency gyrotrons used in plasma heating must achieve the highest possible efficiency in order to reduce system size and cost and to minimize thermal and mechanical problems. This thesis presents an experimental study of efficiency enhancement in a 1.5 MW, 110 GHz gyrotron oscillator, which operated at 50 % efficiency with a single-stage depressed collector. We present the design and detailed experimental results of a new low ohmic loss cavity, a four-mirror internal mode converter and a single-stage depressed collector. The low ohmic loss TE22,6 cavity, designated "V-2005", was designed using the code MAGY to have a Q factor of 830, which would be suitable for CW operation in an industrial gyrotron. The cavity was first tested in the axial configuration, in which the output waveguide also serves as the electron beam collector. In 3 microsecond pulsed operation at 97 kV and 40 A, an output power of 1.67 MW at an efficiency of 42 % was obtained without a depressed collector. The V-2005 cavity efficiency exceeds that of the older "V-2003" cavity by 5 percentage points. The enhanced efficiency of the V-2005 cavity may be understood by analyzing the start-up scenario of the cavities. During start-up, the V-2003 cavity suffers from strong mode competition with the TE19,7 mode, resulting in a relatively low efficiency, while the V-2005 cavity has an absence of such mode competition. The experimental mode maps (regions of oscillation vs. magnetic field) obtained for the two cavities are in excellent agreement with the start-up simulations. Following the axial configuration experiments, the experiment was rebuilt with an internal mode converter consisting of a launcher and 4 mirrors, and with a single-stage depressed collector. An output power of 1.5 MW was measured. The internal mode converter operated at 90 % efficiency. When the depressed collector was run at 25 kV, an overall efficiency of 50 % was achieved. An aftercavity interaction (ACI) was investigated as a possible cause of efficiency reduction in the gyrotron. === (cont.) The ACI occurs when the spent electron beam interacts at cyclotron resonance with the traveling output microwave beam in a region of lower magnetic field just after the cavity. The presence of the ACI was identified from the comparison between simulation results and the measurement of the depression voltage as a function of beam current. Future research should consider ways of eliminating the ACI, ways of improving the internal mode converter, and the use of a two-stage depressed collector. === by Eunmi Choi. === Ph.D.
author2 Richard J. Temkin.
author_facet Richard J. Temkin.
Choi, Eunmi, Ph. D. Massachusetts Institute of Technology
author Choi, Eunmi, Ph. D. Massachusetts Institute of Technology
author_sort Choi, Eunmi, Ph. D. Massachusetts Institute of Technology
title Experimental study of a high efficiency gyrotron oscillator
title_short Experimental study of a high efficiency gyrotron oscillator
title_full Experimental study of a high efficiency gyrotron oscillator
title_fullStr Experimental study of a high efficiency gyrotron oscillator
title_full_unstemmed Experimental study of a high efficiency gyrotron oscillator
title_sort experimental study of a high efficiency gyrotron oscillator
publisher Massachusetts Institute of Technology
publishDate 2009
url http://hdl.handle.net/1721.1/45418
work_keys_str_mv AT choieunmiphdmassachusettsinstituteoftechnology experimentalstudyofahighefficiencygyrotronoscillator
_version_ 1719036929203240960