Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === In title on t.p., double underscored &quo...

Full description

Bibliographic Details
Main Author: Patta, Yoda Rante
Other Authors: Michael J. Cima.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://hdl.handle.net/1721.1/44207
id ndltd-MIT-oai-dspace.mit.edu-1721.1-44207
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-442072019-05-02T15:39:00Z Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films Patta, Yoda Rante Michael J. Cima. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Materials Science and Engineering. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. In title on t.p., double underscored "x" appears as subscript. Includes bibliographical references (p. 68-71). The past two decades have seen advancements in high temperature superconducting cables for use in applications such as electrical transmission lines, propulsion systems, and mobile power generation systems. This work describes the development of a non-fluorine precursor solution for YBCO films with high critical current densities (Jc). An aqueous nitrate precursor solution system was selected from three possible precursor solution systems. It was further developed to produce YBCO films with Jc > 1 MA/cm2. Films up to ~800 nm thickness were made, and Jc > 1 MA/cm2 was obtained for films of over ~400 nm thickness. The developed aqueous solution contained a rheology modifier (hydroxyethyl cellulose / HEC), nitrates of Y, Ba, and Cu, and chelating agents (polyethylene glycol / PEG and sucrose). The total organic content was ~12 wt% of the entire solution, and the total cation concentration was ~0.7 M. The rheology modifying polymer determined the thickness of the deposited films. This allowed for the deposition of films with higher thickness than would be dictated by the total dissolved cations alone. A low temperature decomposition process was developed based on analyses of the chemical reactions that take place in the precursor films as they were heated. This process produced smooth and defect-free intermediate films that were stable under ambient conditions. These films were then heat treated to convert them into YBCO films. Recommendations for future work include further improvements to the precursor solution, including more effective chelating agents and possible alternative solvent systems. Intermediate films thicker than 2.5 [mu]m still tended to have surface defects. (cont.) Additional in-depth thermal analysis would further show how these defects develop, and adjustments to the decomposition process could be made accordingly. High resolution plan-view and cross-sectional microstructures of the films between the precursor state and their converted forms is recommended. These future studies will be valuable in further improving the performance and thickness of films derived from the non-fluorine precursor solution developed in this thesis. Yoda Rante Patta. S.M. 2009-01-26T22:01:36Z 2009-01-26T22:01:36Z 2008 2008 Thesis http://hdl.handle.net/1721.1/44207 277139561 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 71 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Materials Science and Engineering.
spellingShingle Materials Science and Engineering.
Patta, Yoda Rante
Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === In title on t.p., double underscored "x" appears as subscript. === Includes bibliographical references (p. 68-71). === The past two decades have seen advancements in high temperature superconducting cables for use in applications such as electrical transmission lines, propulsion systems, and mobile power generation systems. This work describes the development of a non-fluorine precursor solution for YBCO films with high critical current densities (Jc). An aqueous nitrate precursor solution system was selected from three possible precursor solution systems. It was further developed to produce YBCO films with Jc > 1 MA/cm2. Films up to ~800 nm thickness were made, and Jc > 1 MA/cm2 was obtained for films of over ~400 nm thickness. The developed aqueous solution contained a rheology modifier (hydroxyethyl cellulose / HEC), nitrates of Y, Ba, and Cu, and chelating agents (polyethylene glycol / PEG and sucrose). The total organic content was ~12 wt% of the entire solution, and the total cation concentration was ~0.7 M. The rheology modifying polymer determined the thickness of the deposited films. This allowed for the deposition of films with higher thickness than would be dictated by the total dissolved cations alone. A low temperature decomposition process was developed based on analyses of the chemical reactions that take place in the precursor films as they were heated. This process produced smooth and defect-free intermediate films that were stable under ambient conditions. These films were then heat treated to convert them into YBCO films. Recommendations for future work include further improvements to the precursor solution, including more effective chelating agents and possible alternative solvent systems. Intermediate films thicker than 2.5 [mu]m still tended to have surface defects. === (cont.) Additional in-depth thermal analysis would further show how these defects develop, and adjustments to the decomposition process could be made accordingly. High resolution plan-view and cross-sectional microstructures of the films between the precursor state and their converted forms is recommended. These future studies will be valuable in further improving the performance and thickness of films derived from the non-fluorine precursor solution developed in this thesis. === Yoda Rante Patta. === S.M.
author2 Michael J. Cima.
author_facet Michael J. Cima.
Patta, Yoda Rante
author Patta, Yoda Rante
author_sort Patta, Yoda Rante
title Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
title_short Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
title_full Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
title_fullStr Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
title_full_unstemmed Non-fluorine precursor solutions for high critical current density REBa₂Cu₃O₇₋x̳ films
title_sort non-fluorine precursor solutions for high critical current density reba₂cu₃o₇₋x̳ films
publisher Massachusetts Institute of Technology
publishDate 2009
url http://hdl.handle.net/1721.1/44207
work_keys_str_mv AT pattayodarante nonfluorineprecursorsolutionsforhighcriticalcurrentdensityreba2cu3o7xfilms
_version_ 1719025600901939200