The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. === Includes bibliographical references (p. 348-366). === With an annual per capita consumption of one cubic meter, concrete is the most manufactured material on Earth. But concrete subject to...

Full description

Bibliographic Details
Main Author: Vandamme, Matthieu
Other Authors: Franz-Josef Ulm.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2008
Subjects:
Online Access:http://hdl.handle.net/1721.1/43906
id ndltd-MIT-oai-dspace.mit.edu-1721.1-43906
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-439062019-05-02T16:34:20Z The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates Vandamme, Matthieu Franz-Josef Ulm. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. Includes bibliographical references (p. 348-366). With an annual per capita consumption of one cubic meter, concrete is the most manufactured material on Earth. But concrete subject to sustained load creeps, like chewing gum, at a rate that deteriorates the durability and lifespan of concrete infrastructure. While it is generally agreed that concrete creep originates from the complex viscous behavior of nanometer-sized building blocks of concrete, the calcium-silicate-hydrates (C-S-H), the origin of concrete creep is still an enigma and the creep properties of C-S-H have never been measured directly since C-S-H cannot be recapitulated ex situ in bulk form. This thesis develops a comprehensive nano-investigation approach to the assessment of the microstructure and the mechanical stiffness, strength and creep properties of the fundamental building block C-S-H. This is achieved by extending the realm of classical indentation analysis of homogeneous solids to highly heterogeneous, linear-viscoelastic, cohesive-frictional materials. Applied to and validated for a wide range of sub-stoichiometric cement pastes of different composition and processing conditions, the link between material composition, microstructure and nanomechanical stiffness, strength and creep properties of cement-based materials is assessed. It is found that C-S-H, exhibiting a unique nanogranular behavior, exists in (at least) three structurally distinct but compositionally similar forms (Low-Density, High-Density and UltraHigh Density) which are characterized by packings close to limit packing densities. It is found that at the nanoscale all C-S-H phases exhibit a logarithmic creep whose magnitude depends only on the packing of 5-nanometer sized particles and not on mix proportions, processing conditions, etc. Logarithmic creep is an intrinsic creep property of C-S-H. (cont.) We suggest that the C-S-H creep rate (~1/t) is due to rearrangement of C-S-H particles similar to the compaction of vibrated particles, for which the free volume dynamics theory of granular physics provides a strong argument in favor of its justification. Finally, we show that the logarithmic creep measured by an indentation test in some minutes time at nanoscales is as exact as macroscopic creep tests carried out over years. This supports the simple idea that large time scales can be accessed by looking at small length scales, which is of great engineering importance. by Matthieu Vandamme. Ph.D. 2008-12-11T18:49:27Z 2008-12-11T18:49:27Z 2008 2008 Thesis http://hdl.handle.net/1721.1/43906 263935147 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 366 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Civil and Environmental Engineering.
spellingShingle Civil and Environmental Engineering.
Vandamme, Matthieu
The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. === Includes bibliographical references (p. 348-366). === With an annual per capita consumption of one cubic meter, concrete is the most manufactured material on Earth. But concrete subject to sustained load creeps, like chewing gum, at a rate that deteriorates the durability and lifespan of concrete infrastructure. While it is generally agreed that concrete creep originates from the complex viscous behavior of nanometer-sized building blocks of concrete, the calcium-silicate-hydrates (C-S-H), the origin of concrete creep is still an enigma and the creep properties of C-S-H have never been measured directly since C-S-H cannot be recapitulated ex situ in bulk form. This thesis develops a comprehensive nano-investigation approach to the assessment of the microstructure and the mechanical stiffness, strength and creep properties of the fundamental building block C-S-H. This is achieved by extending the realm of classical indentation analysis of homogeneous solids to highly heterogeneous, linear-viscoelastic, cohesive-frictional materials. Applied to and validated for a wide range of sub-stoichiometric cement pastes of different composition and processing conditions, the link between material composition, microstructure and nanomechanical stiffness, strength and creep properties of cement-based materials is assessed. It is found that C-S-H, exhibiting a unique nanogranular behavior, exists in (at least) three structurally distinct but compositionally similar forms (Low-Density, High-Density and UltraHigh Density) which are characterized by packings close to limit packing densities. It is found that at the nanoscale all C-S-H phases exhibit a logarithmic creep whose magnitude depends only on the packing of 5-nanometer sized particles and not on mix proportions, processing conditions, etc. Logarithmic creep is an intrinsic creep property of C-S-H. === (cont.) We suggest that the C-S-H creep rate (~1/t) is due to rearrangement of C-S-H particles similar to the compaction of vibrated particles, for which the free volume dynamics theory of granular physics provides a strong argument in favor of its justification. Finally, we show that the logarithmic creep measured by an indentation test in some minutes time at nanoscales is as exact as macroscopic creep tests carried out over years. This supports the simple idea that large time scales can be accessed by looking at small length scales, which is of great engineering importance. === by Matthieu Vandamme. === Ph.D.
author2 Franz-Josef Ulm.
author_facet Franz-Josef Ulm.
Vandamme, Matthieu
author Vandamme, Matthieu
author_sort Vandamme, Matthieu
title The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
title_short The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
title_full The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
title_fullStr The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
title_full_unstemmed The nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
title_sort nanogranular origin of concrete creep : a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates
publisher Massachusetts Institute of Technology
publishDate 2008
url http://hdl.handle.net/1721.1/43906
work_keys_str_mv AT vandammematthieu thenanogranularoriginofconcretecreepananoindentationinvestigationofmicrostructureandfundamentalpropertiesofcalciumsilicatehydrates
AT vandammematthieu nanogranularoriginofconcretecreepananoindentationinvestigationofmicrostructureandfundamentalpropertiesofcalciumsilicatehydrates
_version_ 1719043037187801088