Summary: | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. === Includes bibliographical references (p. 105-108). === Frequent interruptions are commonplace in modem work environments. The negative impacts of interruptions are well documented and include increased task completion and error rates in individual task activities, as well as interference with team coordination in team-based activities. The ramifications of an interruption in mission control operations, such as military command and control and emergency response, can be particularly costly due to the time and life-critical nature of these operations. The negative impacts of interruptions have motivated recent developments in software tools, called interruption recovery tools, which help mitigate the effects of interruptions in a variety of task environments. However, mission control operations introduce particular challenges for the design of these tools due to the dynamic and highly collaborative nature of these environments. To address this issue, this thesis investigates methods of reducing the negative consequences of interruptions in complex, mission control operations. In particular, this thesis focuses on supporting interruption recovery for team supervisors in these environments, as the research has shown that supervisors are particularly susceptible to frequent interruptions. Based on the results of a requirements analysis, which involved a cognitive task analysis of a representative mission control task scenario, a new interruption recovery tool, named the Interruption Recovery Assistance (IRA) tool, was developed. In particular, the IRA tool was designed to support a military mission commander overseeing a team of unmanned aerial vehicle (UAV) operators performing ground force protection operations. The IRA tool provides the mission commander a visual summary of mission changes, in the form of an event bookmark timeline. It also provides interactive capabilities to enable the commander to view additional information on the primary task displays when further detail about a particular mission event is needed. The thesis also presents the findings from a user study that was conducted to evaluate the effectiveness of the IRA tool on interruption recovery during collaborative UAV mission operations. The study produced mixed results regarding the effectiveness of the IRA tool. The statistical analysis indicated a negative impact on recovery time, while indicating a positive impact on decision accuracy, especially in complex task situations. The study also indicated that the effect of the IRA tool varied across differ user populations. In particular, the IRA tool tended to provide greater benefits to participants without military experience, compared to military participants involved in the study. The qualitative findings from the study provided key insights into the impact and utility of the IRA tool. These insights were used to identify several future research and design directions related to interruption recovery in mission control operations. === by Jordan Wan. === M.Eng.
|