Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006. === Includes bibliographical references (leaves 73-74). === The objective of this study is to devise a method for utilizing the ORIGEN-S computer code to calculate the activation products generated...

Full description

Bibliographic Details
Main Author: Helvenston, Edward M. (Edward March)
Other Authors: Mujid S. Kazimi and Lin-wen Hu.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2008
Subjects:
Online Access:http://hdl.handle.net/1721.1/41591
id ndltd-MIT-oai-dspace.mit.edu-1721.1-41591
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-415912019-05-02T16:19:13Z Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code Helvenston, Edward M. (Edward March) Mujid S. Kazimi and Lin-wen Hu. Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering. Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering. Nuclear Science and Engineering. Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006. Includes bibliographical references (leaves 73-74). The objective of this study is to devise a method for utilizing the ORIGEN-S computer code to calculate the activation products generated in in-core experimental assemblies at the MIT Research Reactor (MITR-II). ORIGEN-S is a nuclear depletion and decay analysis code. It accounts for all types of nuclear reactions and eliminates the need for selection of the dominant reactions that will occur in a given experiment, as must be done with the existing activity calculation method. It is expected that the new approach will be easy to use, and will produce radioactivity estimations that are generally more accurate than those produced by the existing method. The ORIGEN-S method has been developed and tested for four experiments that have been or are scheduled to be irradiated in the MITR. These experiments are the Advanced Cladding Irradiation (ACI), High Temperature Irradiation Facility (HTIF), Electric Power Research Institute Electro-Chemical Potential (EPRI ECP) loop, and Annular Fuel Test Rig (AFTR). The method has also been used to perform activation analyses for ten individual elements (plus U-235 and U-238) that are commonly found in MITR in-core experiment (ICE) assemblies. The ORIGEN-S analyses for the ACI, HTIF, and EPRI ECP experiments produced results that were relatively similar to the results produced by previous analyses that utilized the current method of activation estimation. This is because the thermal neutron capture reactions, which are major contributors to the activation of these experiments, are already well accounted for in the existing method. The results of the ORIGEN-S analysis for the AFTR, which contains fissile material, were also very similar to the results of the previous analysis, despite the fact that the previous analysis accounted for changes in flux due to fissile nuclide depletion during irradiation and the current analysis did not. It is concluded that the activation calculation method developed should be generally adequate for all experiments irradiated in the MITR core. A possible exception involves experiments containing quantities of fissile material larger than the quantities contained in the AFTR, as these experiments could produce significant changes in neutron flux levels that would render this method inadequate. by Edward M. Helvenston. S.B. 2008-05-19T15:58:00Z 2008-05-19T15:58:00Z 2006 2006 Thesis http://hdl.handle.net/1721.1/41591 213496491 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 158 leaves application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Nuclear Science and Engineering.
spellingShingle Nuclear Science and Engineering.
Helvenston, Edward M. (Edward March)
Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
description Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006. === Includes bibliographical references (leaves 73-74). === The objective of this study is to devise a method for utilizing the ORIGEN-S computer code to calculate the activation products generated in in-core experimental assemblies at the MIT Research Reactor (MITR-II). ORIGEN-S is a nuclear depletion and decay analysis code. It accounts for all types of nuclear reactions and eliminates the need for selection of the dominant reactions that will occur in a given experiment, as must be done with the existing activity calculation method. It is expected that the new approach will be easy to use, and will produce radioactivity estimations that are generally more accurate than those produced by the existing method. The ORIGEN-S method has been developed and tested for four experiments that have been or are scheduled to be irradiated in the MITR. These experiments are the Advanced Cladding Irradiation (ACI), High Temperature Irradiation Facility (HTIF), Electric Power Research Institute Electro-Chemical Potential (EPRI ECP) loop, and Annular Fuel Test Rig (AFTR). The method has also been used to perform activation analyses for ten individual elements (plus U-235 and U-238) that are commonly found in MITR in-core experiment (ICE) assemblies. The ORIGEN-S analyses for the ACI, HTIF, and EPRI ECP experiments produced results that were relatively similar to the results produced by previous analyses that utilized the current method of activation estimation. This is because the thermal neutron capture reactions, which are major contributors to the activation of these experiments, are already well accounted for in the existing method. The results of the ORIGEN-S analysis for the AFTR, which contains fissile material, were also very similar to the results of the previous analysis, despite the fact that the previous analysis accounted for changes in flux due to fissile nuclide depletion during irradiation and the current analysis did not. === It is concluded that the activation calculation method developed should be generally adequate for all experiments irradiated in the MITR core. A possible exception involves experiments containing quantities of fissile material larger than the quantities contained in the AFTR, as these experiments could produce significant changes in neutron flux levels that would render this method inadequate. === by Edward M. Helvenston. === S.B.
author2 Mujid S. Kazimi and Lin-wen Hu.
author_facet Mujid S. Kazimi and Lin-wen Hu.
Helvenston, Edward M. (Edward March)
author Helvenston, Edward M. (Edward March)
author_sort Helvenston, Edward M. (Edward March)
title Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
title_short Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
title_full Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
title_fullStr Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
title_full_unstemmed Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code
title_sort analysis of in-core experiment activities for the mit research reactor using the origen computer code
publisher Massachusetts Institute of Technology
publishDate 2008
url http://hdl.handle.net/1721.1/41591
work_keys_str_mv AT helvenstonedwardmedwardmarch analysisofincoreexperimentactivitiesforthemitresearchreactorusingtheorigencomputercode
_version_ 1719038421814476800