Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications

Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2007. === Includes bibliographical references (p. 157-168). === Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. T...

Full description

Bibliographic Details
Main Author: Boudoux, Caroline
Other Authors: Brett E. Bouma.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2008
Subjects:
Online Access:http://dspace.mit.edu/handle/1721.1/38595
http://hdl.handle.net/1721.1/38595
id ndltd-MIT-oai-dspace.mit.edu-1721.1-38595
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Harvard University--MIT Division of Health Sciences and Technology.
spellingShingle Harvard University--MIT Division of Health Sciences and Technology.
Boudoux, Caroline
Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
description Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2007. === Includes bibliographical references (p. 157-168). === Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular features in a non-destructive, minimally invasive manner. Prior studies have demonstrated the potential of the techniques as well as highlighted the need for faster acquisition rates and higher sensitivity. In this thesis, new laser sources, optical fiber arrangements and probe designs are explored to ultimately evaluate SECM's relevance as a clinical tool. Clinical imaging at cellular scales requires imaging rates on the order of tens of frames per second to reduce motion artifacts from unavoidable patient movements. Rapid SECM imaging was achieved through the development of a novel wavelength swept laser which simultaneously provided high output power (> 10mrW), narrow linewidth (10GHz), broad wavelength tuning (80 nm centered at 1310 nm) and fast repetition rates (up to 16,000 Hz), while being compact and environmentally stable. Imaging with a wavelength swept SECM system was characterized by coupling the laser to a tabletop imaging arm comprising a high density holographic grating, a galvanometer mounted mirror and a 0.9 NA water immersion microscope objective. === (cont.) Rapid SECM imaging is performed at a transverse resolution of 1.4 microns, axial resolution of 6 microns over a field of view of 440x440 microns and allows subcellular imaging ex vivo (excised specimens) and in vivo (human skin). A study on 40 excised head and neck specimens showed that SECM has the potential to perform tissue identification, but also revealed the presence of speckle noise due to the coherent nature of the illumination and collection schemes through a single mode optical fiber. A partially coherent system based on single mode fiber for illumination and multimode fiber for detection was simulated, implemented and tested to find adequate balance between attenuation of speckle noise and conservation of resolution. A coupling of 20 modes was found to reduce speckle by a factor 4.5 with a minimal sectioning penalty of 0.25, while allowing a signal increase of 8dB. This improvement in sensitivity allowed SECM table top system to be used for investigations in developmental biology where Dual clad fibers (DCF) were previously shown to allow partially coherent endoscopic imaging, using the single mode core for illumination and inner clad for multimodal collection. === (cont.) Commercially available DCF's which propagate thousands of modes are ill suited for confocal endoscopes as collecting such a number of modes would destroy the axial resolution. Based on results from the previous section and through modal analysis, a DCF was designed, drawn - via a collaboration with Boston University Photonics Center -, and tested for use with SECM. The prototype DCF yielded promising results (3 fold speckle attenuation, optical sectioning degradation of 0.85), and showed the need for implementation of better coupling mechanisms to take advantage of increased signal collection. Finally, a portable SECM system was built for in vivo evaluation of pediatric vocal fold. A preliminary study on porcine and cadaveric tissue showed that SECM can distinguish between epithelium, superior and intermediate layers of the lamina propria, which could help elucidate the development mechanism of the voice apparatus if performed in vivo. The handheld instrument comprises a custom grating scanner imaging the scanning pivot onto the back pupil of a high NA microscope objective. The imaging tube can easily be interchanged to accommodate geometrical constraints imposed by different age groups. === (cont.) The probe, currently under review by the biomedical engineering committee, revealed cellular and sub cellular details of human skin in vivo at depth and acquisition rates sufficient to capture blood cells flowing through capillaries. Through major improvements in acquisition speeds, sensitivity, and speckle appearance, this work established SECM as a potent clinical and biological imaging tool. Ultimate confirmation will be revealed through in vivo studies to come, but limitations are likely to be of engineering nature rather than from physical considerations. Future work should explore the possibility to combine SECM with other contrast mechanisms to provide imaging with increased specificity. === by Caroline Boudoux. === Ph.D.
author2 Brett E. Bouma.
author_facet Brett E. Bouma.
Boudoux, Caroline
author Boudoux, Caroline
author_sort Boudoux, Caroline
title Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
title_short Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
title_full Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
title_fullStr Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
title_full_unstemmed Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
title_sort wavelength swept spectrally encoded confocal microscopy for biological and clinical applications
publisher Massachusetts Institute of Technology
publishDate 2008
url http://dspace.mit.edu/handle/1721.1/38595
http://hdl.handle.net/1721.1/38595
work_keys_str_mv AT boudouxcaroline wavelengthsweptspectrallyencodedconfocalmicroscopyforbiologicalandclinicalapplications
_version_ 1719034837094891520
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-385952019-05-02T16:07:07Z Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications Boudoux, Caroline Brett E. Bouma. Harvard University--MIT Division of Health Sciences and Technology. Harvard University--MIT Division of Health Sciences and Technology. Harvard University--MIT Division of Health Sciences and Technology. Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2007. Includes bibliographical references (p. 157-168). Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular features in a non-destructive, minimally invasive manner. Prior studies have demonstrated the potential of the techniques as well as highlighted the need for faster acquisition rates and higher sensitivity. In this thesis, new laser sources, optical fiber arrangements and probe designs are explored to ultimately evaluate SECM's relevance as a clinical tool. Clinical imaging at cellular scales requires imaging rates on the order of tens of frames per second to reduce motion artifacts from unavoidable patient movements. Rapid SECM imaging was achieved through the development of a novel wavelength swept laser which simultaneously provided high output power (> 10mrW), narrow linewidth (10GHz), broad wavelength tuning (80 nm centered at 1310 nm) and fast repetition rates (up to 16,000 Hz), while being compact and environmentally stable. Imaging with a wavelength swept SECM system was characterized by coupling the laser to a tabletop imaging arm comprising a high density holographic grating, a galvanometer mounted mirror and a 0.9 NA water immersion microscope objective. (cont.) Rapid SECM imaging is performed at a transverse resolution of 1.4 microns, axial resolution of 6 microns over a field of view of 440x440 microns and allows subcellular imaging ex vivo (excised specimens) and in vivo (human skin). A study on 40 excised head and neck specimens showed that SECM has the potential to perform tissue identification, but also revealed the presence of speckle noise due to the coherent nature of the illumination and collection schemes through a single mode optical fiber. A partially coherent system based on single mode fiber for illumination and multimode fiber for detection was simulated, implemented and tested to find adequate balance between attenuation of speckle noise and conservation of resolution. A coupling of 20 modes was found to reduce speckle by a factor 4.5 with a minimal sectioning penalty of 0.25, while allowing a signal increase of 8dB. This improvement in sensitivity allowed SECM table top system to be used for investigations in developmental biology where Dual clad fibers (DCF) were previously shown to allow partially coherent endoscopic imaging, using the single mode core for illumination and inner clad for multimodal collection. (cont.) Commercially available DCF's which propagate thousands of modes are ill suited for confocal endoscopes as collecting such a number of modes would destroy the axial resolution. Based on results from the previous section and through modal analysis, a DCF was designed, drawn - via a collaboration with Boston University Photonics Center -, and tested for use with SECM. The prototype DCF yielded promising results (3 fold speckle attenuation, optical sectioning degradation of 0.85), and showed the need for implementation of better coupling mechanisms to take advantage of increased signal collection. Finally, a portable SECM system was built for in vivo evaluation of pediatric vocal fold. A preliminary study on porcine and cadaveric tissue showed that SECM can distinguish between epithelium, superior and intermediate layers of the lamina propria, which could help elucidate the development mechanism of the voice apparatus if performed in vivo. The handheld instrument comprises a custom grating scanner imaging the scanning pivot onto the back pupil of a high NA microscope objective. The imaging tube can easily be interchanged to accommodate geometrical constraints imposed by different age groups. (cont.) The probe, currently under review by the biomedical engineering committee, revealed cellular and sub cellular details of human skin in vivo at depth and acquisition rates sufficient to capture blood cells flowing through capillaries. Through major improvements in acquisition speeds, sensitivity, and speckle appearance, this work established SECM as a potent clinical and biological imaging tool. Ultimate confirmation will be revealed through in vivo studies to come, but limitations are likely to be of engineering nature rather than from physical considerations. Future work should explore the possibility to combine SECM with other contrast mechanisms to provide imaging with increased specificity. by Caroline Boudoux. Ph.D. 2008-11-10T19:51:38Z 2008-11-10T19:51:38Z 2007 2007 Thesis http://dspace.mit.edu/handle/1721.1/38595 http://hdl.handle.net/1721.1/38595 156912008 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/38595 http://dspace.mit.edu/handle/1721.1/7582 168 p. application/pdf Massachusetts Institute of Technology