Sensitive manipulation

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Includes bibliographical refe...

Full description

Bibliographic Details
Main Author: Torres-Jara, Eduardo R. (Eduardo Rafael), 1972-
Other Authors: Rodney Brooks.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/38535
id ndltd-MIT-oai-dspace.mit.edu-1721.1-38535
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-385352019-05-02T15:44:43Z Sensitive manipulation Torres-Jara, Eduardo R. (Eduardo Rafael), 1972- Rodney Brooks. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 161-172). This thesis presents an effective alternative to the traditional approach to robotic manipulation. In our approach, manipulation is mainly guided by tactile feedback as opposed to vision. The motivation comes from the fact that manipulating an object implies coming in contact with it, consequently, directly sensing physical contact seems more important than vision to control the interaction of the object and the robot. In this work, the traditional approach of a highly precise arm and vision system controlled by a model-based architecture is replaced by one that uses a low mechanical impedance arm with dense tactile sensing and exploration capabilities run by a behavior-based architecture. The robot OBRERO has been built to implement this approach. New tactile sensing technology has been developed and mounted on the robot's hand. These sensors are biologically inspired and present more adequate features for manipulation than those of state of the art tactile sensors. The robot's limb was built with compliant actuators, which present low mechanical impedance, to make the interaction between the robot and the environment safer than that of a traditional high-stiffness arm. A new actuator was created to fit in the hand size constraints. (cont.) The reduced precision of OBRERO's limb is compensated by the capability of exploration given by the tactile sensors, actuators and the software architecture. The success of this approach is shown by picking up objects in an unmodelled environment. This task, simple for humans, has been a challenge for robots. The robot can deal with new, unmodelled objects. OBRERO can come gently in contact, explore, lift, and place the object in a different location. It can also detect slippage and external forces acting on an object while it is held. Each one of these steps are done by using tactile feedback. This task can be done with very light objects with no fixtures and on slippery surfaces. by Eduardo Rafael Torres Jara. Ph.D. 2007-08-29T19:07:05Z 2007-08-29T19:07:05Z 2007 2007 Thesis http://hdl.handle.net/1721.1/38535 164884552 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 172 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Electrical Engineering and Computer Science.
spellingShingle Electrical Engineering and Computer Science.
Torres-Jara, Eduardo R. (Eduardo Rafael), 1972-
Sensitive manipulation
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Includes bibliographical references (p. 161-172). === This thesis presents an effective alternative to the traditional approach to robotic manipulation. In our approach, manipulation is mainly guided by tactile feedback as opposed to vision. The motivation comes from the fact that manipulating an object implies coming in contact with it, consequently, directly sensing physical contact seems more important than vision to control the interaction of the object and the robot. In this work, the traditional approach of a highly precise arm and vision system controlled by a model-based architecture is replaced by one that uses a low mechanical impedance arm with dense tactile sensing and exploration capabilities run by a behavior-based architecture. The robot OBRERO has been built to implement this approach. New tactile sensing technology has been developed and mounted on the robot's hand. These sensors are biologically inspired and present more adequate features for manipulation than those of state of the art tactile sensors. The robot's limb was built with compliant actuators, which present low mechanical impedance, to make the interaction between the robot and the environment safer than that of a traditional high-stiffness arm. A new actuator was created to fit in the hand size constraints. === (cont.) The reduced precision of OBRERO's limb is compensated by the capability of exploration given by the tactile sensors, actuators and the software architecture. The success of this approach is shown by picking up objects in an unmodelled environment. This task, simple for humans, has been a challenge for robots. The robot can deal with new, unmodelled objects. OBRERO can come gently in contact, explore, lift, and place the object in a different location. It can also detect slippage and external forces acting on an object while it is held. Each one of these steps are done by using tactile feedback. This task can be done with very light objects with no fixtures and on slippery surfaces. === by Eduardo Rafael Torres Jara. === Ph.D.
author2 Rodney Brooks.
author_facet Rodney Brooks.
Torres-Jara, Eduardo R. (Eduardo Rafael), 1972-
author Torres-Jara, Eduardo R. (Eduardo Rafael), 1972-
author_sort Torres-Jara, Eduardo R. (Eduardo Rafael), 1972-
title Sensitive manipulation
title_short Sensitive manipulation
title_full Sensitive manipulation
title_fullStr Sensitive manipulation
title_full_unstemmed Sensitive manipulation
title_sort sensitive manipulation
publisher Massachusetts Institute of Technology
publishDate 2007
url http://hdl.handle.net/1721.1/38535
work_keys_str_mv AT torresjaraeduardoreduardorafael1972 sensitivemanipulation
_version_ 1719027277294993408