Thin optic surface analysis for high resolution X-ray telescopes
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004. === Includes bibliographical references (p. 119-122). === The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displa...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Massachusetts Institute of Technology
2006
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/34556 |
id |
ndltd-MIT-oai-dspace.mit.edu-1721.1-34556 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-MIT-oai-dspace.mit.edu-1721.1-345562019-05-02T15:39:00Z Thin optic surface analysis for high resolution X-ray telescopes Akilian, Mireille Mark L. Schattenburg and Samir Nayfeh. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004. Includes bibliographical references (p. 119-122). The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing glass sheets and further sheet shaping processes are covered. Future generation, high resolution x-ray telescopes require thin optics with large surface area to thickness ratio and a surface flatness of -500 nm. A novel method utilizing porous ceramics, which provide a thin layer of air for sheet glass to rest on during the shaping process, is investigated. The shaping process involves slumping glass on a uniform layer of air at elevated temperatures, where the viscosity of glass is low enough for it to sag under its own weight and replicate the surface it rests on. Flow in porous, rectangular air bearings is covered with both flat and grooved surfaces. The pressure distribution in the air gap between the ceramic and the glass sheet determines the surface quality of glass during slumping. The mechanical integrity of porous ceramics at elevated temperatures is investigated to predict the effect of the decrease in ceramic stiffness on the final shape of the optic. (cont.) A metrology truss used to kinematically constrain thin optics during metrology is designed. This device mitigates the effects of external forces, such as gravity, friction, and thermal stresses, induced on the optic while being mechanically constrained, thus significantly improving the repeatability of the optic surface map measurements. by Mireille Akilian. S.M. 2006-11-07T12:56:11Z 2006-11-07T12:56:11Z 2004 2004 Thesis http://hdl.handle.net/1721.1/34556 71125424 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 122 p. 6573039 bytes 6580054 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Mechanical Engineering. |
spellingShingle |
Mechanical Engineering. Akilian, Mireille Thin optic surface analysis for high resolution X-ray telescopes |
description |
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004. === Includes bibliographical references (p. 119-122). === The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing glass sheets and further sheet shaping processes are covered. Future generation, high resolution x-ray telescopes require thin optics with large surface area to thickness ratio and a surface flatness of -500 nm. A novel method utilizing porous ceramics, which provide a thin layer of air for sheet glass to rest on during the shaping process, is investigated. The shaping process involves slumping glass on a uniform layer of air at elevated temperatures, where the viscosity of glass is low enough for it to sag under its own weight and replicate the surface it rests on. Flow in porous, rectangular air bearings is covered with both flat and grooved surfaces. The pressure distribution in the air gap between the ceramic and the glass sheet determines the surface quality of glass during slumping. The mechanical integrity of porous ceramics at elevated temperatures is investigated to predict the effect of the decrease in ceramic stiffness on the final shape of the optic. === (cont.) A metrology truss used to kinematically constrain thin optics during metrology is designed. This device mitigates the effects of external forces, such as gravity, friction, and thermal stresses, induced on the optic while being mechanically constrained, thus significantly improving the repeatability of the optic surface map measurements. === by Mireille Akilian. === S.M. |
author2 |
Mark L. Schattenburg and Samir Nayfeh. |
author_facet |
Mark L. Schattenburg and Samir Nayfeh. Akilian, Mireille |
author |
Akilian, Mireille |
author_sort |
Akilian, Mireille |
title |
Thin optic surface analysis for high resolution X-ray telescopes |
title_short |
Thin optic surface analysis for high resolution X-ray telescopes |
title_full |
Thin optic surface analysis for high resolution X-ray telescopes |
title_fullStr |
Thin optic surface analysis for high resolution X-ray telescopes |
title_full_unstemmed |
Thin optic surface analysis for high resolution X-ray telescopes |
title_sort |
thin optic surface analysis for high resolution x-ray telescopes |
publisher |
Massachusetts Institute of Technology |
publishDate |
2006 |
url |
http://hdl.handle.net/1721.1/34556 |
work_keys_str_mv |
AT akilianmireille thinopticsurfaceanalysisforhighresolutionxraytelescopes |
_version_ |
1719025537497694208 |