Benchmarking convolutional neural networks for object segmentation and pose estimation

Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-s...

Full description

Bibliographic Details
Main Author: Le, Tiffany Anh Mai
Other Authors: Lei Hamilton abd Antonio Torralba.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/119531
Description
Summary:Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 59-60). === Convolutional neural networks (CNNs), particularly those designed for object segmentation and pose estimation, are now applied to robotics applications involving mobile manipulation. For these robotic applications to be successful, robust and accurate performance from the CNNs is critical. Therefore, in order to develop an understanding of CNN performance, several CNN architectures are benchmarked on a set of metrics for object segmentation and pose estimation. This thesis presents these benchmarking results, which show that metric performance is dependent on the complexity of network architectures. The reasons behind poor pose estimation and object segmentation, which include object symmetry and resolution loss due to downsampling followed by upsampling in the networks, respectively, are also identified in this thesis. These findings can be used to guide and improve the development of CNNs for object segmentation and pose estimation in the future. === by Tiffany Anh Mai Le. === M. Eng.