Summary: | Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2017. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 43-44). === In the field of radiation oncology, while there are simulations and devices that allow users to be relatively confident that radiation to the tumor and sparing of healthy tissue is being maximized, the inability to reliably measure and control the dose during radiation treatment is a major source of uncertainty. This uncertainty is due to issues such as organ movement, a lack of precise and constant knowledge of beam current at the target site, and the inability to correctly register dose during hardware or software failures; all of which result in radiation treatments being measured after the procedure or in a fault susceptible manner during the procedure. The integrating feedback f-center dosimeter (IF2D) is a dosimeter that would address these challenges and enable feedback during radiotherapy procedures, which would give doctors and patients confidence that the correct dose was delivered to the target sites without exceeding allowable doses to healthy tissue. An in-situ irradiator will be designed and later used to quantify the relationship between dose and f-center absorption. This design will help guide the future experiment and further the development of the IF2D. === by Hadrick Alexis Green. === S.B.
|