Conjugated polymers and designed interfaces : conformational analysis and applications

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017. === Cataloged from PDF version of thesis. Pages 160 and 161 are blank. === Includes bibliographical references. === The conformations of conjugated polymers can be altered by nearby environm...

Full description

Bibliographic Details
Main Author: Koo, Byungjin
Other Authors: Timothy M. Swager.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2017
Subjects:
Online Access:http://hdl.handle.net/1721.1/111326
id ndltd-MIT-oai-dspace.mit.edu-1721.1-111326
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-1113262019-05-02T16:20:30Z Conjugated polymers and designed interfaces : conformational analysis and applications Koo, Byungjin Timothy M. Swager. Massachusetts Institute of Technology. Department of Materials Science and Engineering. Massachusetts Institute of Technology. Department of Materials Science and Engineering. Materials Science and Engineering. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017. Cataloged from PDF version of thesis. Pages 160 and 161 are blank. Includes bibliographical references. The conformations of conjugated polymers can be altered by nearby environments. The intrapolymer conformation and interpolymer assemblies have a crucial impact on a variety of properties such as absorption, energy migration, and fluorescence. In this dissertation, the conformational changes and their effects on photophysics in different environments will be discussed. In Chapter 1, the basic principles to understand this thesis will be reviewed, including the processes of absorption and emission, exciton migration, the Langmuir-Blodgett technique, and interfacial phenomena. In Chapter 2, the conformational control and alignment of conjugated polymers at the air-water interface and how this alignment of polymers can lead to new emissive aggregates will be presented. The emission has the characteristics of excimers with the improved fluorescence quantum yields. The transfer of the aligned aggregates to glass substrates is attempted and these excimer films undergo reorganization upon exposure to solvent vapors, which triggers the fluorescence color change from yellow to cyan, leading to fluorescence-based chemical sensors. In Chapter 3, exciton migration to low-energy emissive traps at amphiphilic interfaces will be discussed. This chapter will deliver the design of interfaces and how the exciton migration can occur at the air-water interface and the hydrocarbon-water interface in lyotropic liquid crystals. To expand this interfacial exciton migration to more generalizable interfaces, Chapter 4 will show the fabrication of oil-in-water emulsions and how exciton migration in oil-in-water emulsion can produce distinct fluorescences between solution and interfaces. Chapter 5 will discuss the structural variations of novel functional conjugated polymers and how substituents can change the conformation of the polymer backbones. Additionally, how this conformational change affects the electronic and optical properties of polymers will be examined. by Byungjin Koo. Ph. D. 2017-09-15T15:29:14Z 2017-09-15T15:29:14Z 2017 2017 Thesis http://hdl.handle.net/1721.1/111326 1003290254 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 162 pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Materials Science and Engineering.
spellingShingle Materials Science and Engineering.
Koo, Byungjin
Conjugated polymers and designed interfaces : conformational analysis and applications
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017. === Cataloged from PDF version of thesis. Pages 160 and 161 are blank. === Includes bibliographical references. === The conformations of conjugated polymers can be altered by nearby environments. The intrapolymer conformation and interpolymer assemblies have a crucial impact on a variety of properties such as absorption, energy migration, and fluorescence. In this dissertation, the conformational changes and their effects on photophysics in different environments will be discussed. In Chapter 1, the basic principles to understand this thesis will be reviewed, including the processes of absorption and emission, exciton migration, the Langmuir-Blodgett technique, and interfacial phenomena. In Chapter 2, the conformational control and alignment of conjugated polymers at the air-water interface and how this alignment of polymers can lead to new emissive aggregates will be presented. The emission has the characteristics of excimers with the improved fluorescence quantum yields. The transfer of the aligned aggregates to glass substrates is attempted and these excimer films undergo reorganization upon exposure to solvent vapors, which triggers the fluorescence color change from yellow to cyan, leading to fluorescence-based chemical sensors. In Chapter 3, exciton migration to low-energy emissive traps at amphiphilic interfaces will be discussed. This chapter will deliver the design of interfaces and how the exciton migration can occur at the air-water interface and the hydrocarbon-water interface in lyotropic liquid crystals. To expand this interfacial exciton migration to more generalizable interfaces, Chapter 4 will show the fabrication of oil-in-water emulsions and how exciton migration in oil-in-water emulsion can produce distinct fluorescences between solution and interfaces. Chapter 5 will discuss the structural variations of novel functional conjugated polymers and how substituents can change the conformation of the polymer backbones. Additionally, how this conformational change affects the electronic and optical properties of polymers will be examined. === by Byungjin Koo. === Ph. D.
author2 Timothy M. Swager.
author_facet Timothy M. Swager.
Koo, Byungjin
author Koo, Byungjin
author_sort Koo, Byungjin
title Conjugated polymers and designed interfaces : conformational analysis and applications
title_short Conjugated polymers and designed interfaces : conformational analysis and applications
title_full Conjugated polymers and designed interfaces : conformational analysis and applications
title_fullStr Conjugated polymers and designed interfaces : conformational analysis and applications
title_full_unstemmed Conjugated polymers and designed interfaces : conformational analysis and applications
title_sort conjugated polymers and designed interfaces : conformational analysis and applications
publisher Massachusetts Institute of Technology
publishDate 2017
url http://hdl.handle.net/1721.1/111326
work_keys_str_mv AT koobyungjin conjugatedpolymersanddesignedinterfacesconformationalanalysisandapplications
_version_ 1719038705011785728