Improving learning experience in MOOCs with educational content linking
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017 === Cataloged from PDF version...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Massachusetts Institute of Technology
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/108989 |
id |
ndltd-MIT-oai-dspace.mit.edu-1721.1-108989 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-MIT-oai-dspace.mit.edu-1721.1-1089892020-10-21T05:10:35Z Improving learning experience in MOOCs with educational content linking Improving learning experience in Massive Open Online Courses with educational content linking Li, Shang-Wen,Ph. D.Massachusetts Institute of Technology. Victor W. Zue. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Electrical Engineering and Computer Science. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017 Cataloged from PDF version of thesis. Includes bibliographical references (pages 153-163). Since the first MOOC (Massive Open Online Course) in 2011, there have been over 4,000 MOOCs on various subjects on the Web, serving over 35 million learners. MOOCs have shown the ability to transcend time and space, democratize knowledge dissemination, and bring the best education in the world to every learner. However, the disparate distances between participants, the size of the learner population, and the heterogeneity of the learner backgrounds make it difficult for instructors to interact with learners in a timely manner, which adversely affects their learning outcome. To address these challenges, in this thesis, we propose a framework of educational content linking. By linking pieces of learning content scattered in the various course materials into an easily accessible structure, we hypothesize that this framework will guide learners and improve content navigation. Since most instruction and knowledge acquisition in MOOCs takes place when learners are surveying course materials, better content navigation may help learners find supporting information to clear up confusion and improve the learning outcome. To support our conjecture, we present end-to-end studies to investigate our framework around two research questions. We first ask, does manually generated linking improve learning? To investigate this question, we choose two STEM courses, statistics and programming language, and demonstrate how the annotation of linking among course materials can be accomplished with collaboration between course staff and online workers. With this annotation, we implement an interface that can simultaneously present learning materials and visualize the linking among them. In a large-scale user study, we observe that this interface enables users to find desired course materials more efficiently, and retain more concepts more readily. This result supports the notion that manual linking does indeed improve learning outcomes. Second, we ask, can learning content be generated using machine learning methods? For this question, we propose an automatic linking algorithm based on conditional random fields. We demonstrate that automatically generated linking can still lead to better learning, although the magnitude of the improvement over the unlinked interface is smaller. We conclude that the proposed linking framework can be implemented at scale with machine learning techniques. by Shang-Wen Li. Ph. D. Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science 2017-05-11T19:59:24Z 2017-05-11T19:59:24Z 2017 2017 Thesis http://hdl.handle.net/1721.1/108989 986521772 eng MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582 163 pages application/pdf Massachusetts Institute of Technology |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Electrical Engineering and Computer Science. |
spellingShingle |
Electrical Engineering and Computer Science. Li, Shang-Wen,Ph. D.Massachusetts Institute of Technology. Improving learning experience in MOOCs with educational content linking |
description |
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017 === Cataloged from PDF version of thesis. === Includes bibliographical references (pages 153-163). === Since the first MOOC (Massive Open Online Course) in 2011, there have been over 4,000 MOOCs on various subjects on the Web, serving over 35 million learners. MOOCs have shown the ability to transcend time and space, democratize knowledge dissemination, and bring the best education in the world to every learner. However, the disparate distances between participants, the size of the learner population, and the heterogeneity of the learner backgrounds make it difficult for instructors to interact with learners in a timely manner, which adversely affects their learning outcome. To address these challenges, in this thesis, we propose a framework of educational content linking. By linking pieces of learning content scattered in the various course materials into an easily accessible structure, we hypothesize that this framework will guide learners and improve content navigation. === Since most instruction and knowledge acquisition in MOOCs takes place when learners are surveying course materials, better content navigation may help learners find supporting information to clear up confusion and improve the learning outcome. To support our conjecture, we present end-to-end studies to investigate our framework around two research questions. We first ask, does manually generated linking improve learning? To investigate this question, we choose two STEM courses, statistics and programming language, and demonstrate how the annotation of linking among course materials can be accomplished with collaboration between course staff and online workers. With this annotation, we implement an interface that can simultaneously present learning materials and visualize the linking among them. In a large-scale user study, we observe that this interface enables users to find desired course materials more efficiently, and retain more concepts more readily. === This result supports the notion that manual linking does indeed improve learning outcomes. Second, we ask, can learning content be generated using machine learning methods? For this question, we propose an automatic linking algorithm based on conditional random fields. We demonstrate that automatically generated linking can still lead to better learning, although the magnitude of the improvement over the unlinked interface is smaller. We conclude that the proposed linking framework can be implemented at scale with machine learning techniques. === by Shang-Wen Li. === Ph. D. === Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science |
author2 |
Victor W. Zue. |
author_facet |
Victor W. Zue. Li, Shang-Wen,Ph. D.Massachusetts Institute of Technology. |
author |
Li, Shang-Wen,Ph. D.Massachusetts Institute of Technology. |
author_sort |
Li, Shang-Wen,Ph. D.Massachusetts Institute of Technology. |
title |
Improving learning experience in MOOCs with educational content linking |
title_short |
Improving learning experience in MOOCs with educational content linking |
title_full |
Improving learning experience in MOOCs with educational content linking |
title_fullStr |
Improving learning experience in MOOCs with educational content linking |
title_full_unstemmed |
Improving learning experience in MOOCs with educational content linking |
title_sort |
improving learning experience in moocs with educational content linking |
publisher |
Massachusetts Institute of Technology |
publishDate |
2017 |
url |
http://hdl.handle.net/1721.1/108989 |
work_keys_str_mv |
AT lishangwenphdmassachusettsinstituteoftechnology improvinglearningexperienceinmoocswitheducationalcontentlinking AT lishangwenphdmassachusettsinstituteoftechnology improvinglearningexperienceinmassiveopenonlinecourseswitheducationalcontentlinking |
_version_ |
1719352586230824960 |