Thin-film silicon solar cells : photonic design, process and fundamentals

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2012. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PD...

Full description

Bibliographic Details
Main Author: Sheng, Xing, Ph. D. Massachusetts Institute of Technology
Other Authors: Lionel C. Kimerling.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2016
Subjects:
Online Access:http://hdl.handle.net/1721.1/105936
id ndltd-MIT-oai-dspace.mit.edu-1721.1-105936
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Materials Science and Engineering.
spellingShingle Materials Science and Engineering.
Sheng, Xing, Ph. D. Massachusetts Institute of Technology
Thin-film silicon solar cells : photonic design, process and fundamentals
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2012. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 153-159). === The photovoltaic technology has been attracting widespread attention because of its effective energy harvest by directly converting solar energy into electricity. Thin-film silicon solar cells are believed to be a promising candidate for further scaled-up production and cost reduction while maintaining the advantages of bulk silicon. The efficiency of thin-film Si solar cells critically depends on optical absorption in the silicon layer since silicon has low absorption coefficient in the red and near-infrared (IR) wavelength ranges due to its indirect bandgap nature. This thesis aims at understanding, designing, and fabricating novel photonic structures for efficiency enhancement in thin-film Si solar cells. We have explored a previously reported a photonic crystal (PC) based structure to improve light absorption in thin-film Si solar cells. The PC structure combines a dielectric grating layer and a distributed Bragg reflector (DBR) for effcient light scattering and reflection, increasing light path length in the thin-film cell. We have understood the operation principles for this design by using photonic band theories and electromagnetic wave simulations. we discover that this DBR with gratings exhibit unusual light trapping in a way different from metal reflectors and photonic crystals. The light trapping effects for the DBR with and without reflector are numerically investigated. The self-assembled anodic aluminum oxide (AAO) technique is introduced to non- lithographically fabricate the grating structure. We adjust the AAO structural parameters by using different anodization voltages, times and electrolytes. Two-step anodization is employed to obtain nearly hexagonal AAO pattern. The interpore periods of the fabricated AAO are calculated by fast Fourier transform (FFT) analysis. We have also demonstrated the fabrication of ordered patterns made of other materials like amorphous Si (a-Si) and silver by using the AAO membrane as a deposition mask. Numerical simulations predict that the fabricated AAO pattern exhibits light trapping performance comparable to the perfectly periodic grating layer. We have implemented the light trapping concepts combining the self-assembled AAO layer and the DBR in the backside of crystalline Si wafers. Photoconductivity measurements suggest that the light absorption is improved in the near-IR spectral range near the band edge of Si. Furthermore, different types of thin-film Si solar cells, including a-Si, mi- crocrystalline Si ([mu]-Si) and micromorph Si solar cells, are investigated. For demonstration, the designed structure is integrated into a 1:5 [mu]m thick [mu]c-Si solar cell. We use numerical simulations to obtain the optimal structure parameters for the grating and the DBR, and then we fabricate the optimized structures using the AAO membrane as a template. The prototype devices integrating our proposed backside structure yield a 21% improvement in efficiency. This is further verified by quantum efficiency measurements, which clearly indicate stronger light absorption in the red and near-IR spectral ranges. Lastly, we have explored the fundamental light trapping limits for thin-film Si solar cells in the wave optics regime. We develop a deterministic method to optimize periodic textures for light trapping. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. In the weak ab- sorption regime, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7[pi]n, considerably larger than the classical [pi]n Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. Since the [pi]n Lambertian limit still applies for isotropic incident light, our optimization methodology can be thought of optimizing the angle/enhancement tradeoff for periodic textures. Based on a modified Shockley-Queisser theory, we conclude that it is possible to achieve more than 20% efficiency in a 1:5 [mu]m thick crystalline Si cell if advanced light trapping schemes can be realized. === by Xing Sheng. === Ph. D.
author2 Lionel C. Kimerling.
author_facet Lionel C. Kimerling.
Sheng, Xing, Ph. D. Massachusetts Institute of Technology
author Sheng, Xing, Ph. D. Massachusetts Institute of Technology
author_sort Sheng, Xing, Ph. D. Massachusetts Institute of Technology
title Thin-film silicon solar cells : photonic design, process and fundamentals
title_short Thin-film silicon solar cells : photonic design, process and fundamentals
title_full Thin-film silicon solar cells : photonic design, process and fundamentals
title_fullStr Thin-film silicon solar cells : photonic design, process and fundamentals
title_full_unstemmed Thin-film silicon solar cells : photonic design, process and fundamentals
title_sort thin-film silicon solar cells : photonic design, process and fundamentals
publisher Massachusetts Institute of Technology
publishDate 2016
url http://hdl.handle.net/1721.1/105936
work_keys_str_mv AT shengxingphdmassachusettsinstituteoftechnology thinfilmsiliconsolarcellsphotonicdesignprocessandfundamentals
_version_ 1719040171290132480
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-1059362019-05-02T16:26:07Z Thin-film silicon solar cells : photonic design, process and fundamentals Sheng, Xing, Ph. D. Massachusetts Institute of Technology Lionel C. Kimerling. Massachusetts Institute of Technology. Department of Materials Science and Engineering. Massachusetts Institute of Technology. Department of Materials Science and Engineering. Materials Science and Engineering. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2012. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 153-159). The photovoltaic technology has been attracting widespread attention because of its effective energy harvest by directly converting solar energy into electricity. Thin-film silicon solar cells are believed to be a promising candidate for further scaled-up production and cost reduction while maintaining the advantages of bulk silicon. The efficiency of thin-film Si solar cells critically depends on optical absorption in the silicon layer since silicon has low absorption coefficient in the red and near-infrared (IR) wavelength ranges due to its indirect bandgap nature. This thesis aims at understanding, designing, and fabricating novel photonic structures for efficiency enhancement in thin-film Si solar cells. We have explored a previously reported a photonic crystal (PC) based structure to improve light absorption in thin-film Si solar cells. The PC structure combines a dielectric grating layer and a distributed Bragg reflector (DBR) for effcient light scattering and reflection, increasing light path length in the thin-film cell. We have understood the operation principles for this design by using photonic band theories and electromagnetic wave simulations. we discover that this DBR with gratings exhibit unusual light trapping in a way different from metal reflectors and photonic crystals. The light trapping effects for the DBR with and without reflector are numerically investigated. The self-assembled anodic aluminum oxide (AAO) technique is introduced to non- lithographically fabricate the grating structure. We adjust the AAO structural parameters by using different anodization voltages, times and electrolytes. Two-step anodization is employed to obtain nearly hexagonal AAO pattern. The interpore periods of the fabricated AAO are calculated by fast Fourier transform (FFT) analysis. We have also demonstrated the fabrication of ordered patterns made of other materials like amorphous Si (a-Si) and silver by using the AAO membrane as a deposition mask. Numerical simulations predict that the fabricated AAO pattern exhibits light trapping performance comparable to the perfectly periodic grating layer. We have implemented the light trapping concepts combining the self-assembled AAO layer and the DBR in the backside of crystalline Si wafers. Photoconductivity measurements suggest that the light absorption is improved in the near-IR spectral range near the band edge of Si. Furthermore, different types of thin-film Si solar cells, including a-Si, mi- crocrystalline Si ([mu]-Si) and micromorph Si solar cells, are investigated. For demonstration, the designed structure is integrated into a 1:5 [mu]m thick [mu]c-Si solar cell. We use numerical simulations to obtain the optimal structure parameters for the grating and the DBR, and then we fabricate the optimized structures using the AAO membrane as a template. The prototype devices integrating our proposed backside structure yield a 21% improvement in efficiency. This is further verified by quantum efficiency measurements, which clearly indicate stronger light absorption in the red and near-IR spectral ranges. Lastly, we have explored the fundamental light trapping limits for thin-film Si solar cells in the wave optics regime. We develop a deterministic method to optimize periodic textures for light trapping. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. In the weak ab- sorption regime, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7[pi]n, considerably larger than the classical [pi]n Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. Since the [pi]n Lambertian limit still applies for isotropic incident light, our optimization methodology can be thought of optimizing the angle/enhancement tradeoff for periodic textures. Based on a modified Shockley-Queisser theory, we conclude that it is possible to achieve more than 20% efficiency in a 1:5 [mu]m thick crystalline Si cell if advanced light trapping schemes can be realized. by Xing Sheng. Ph. D. 2016-12-22T15:15:33Z 2016-12-22T15:15:33Z 2012 2012 Thesis http://hdl.handle.net/1721.1/105936 965196045 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 159 pages application/pdf Massachusetts Institute of Technology