Summary: | The objective of this study was to optimize regeneration parameters of immature inflorescence culture of Triticum aestivum cv. Yü === regir-89. The effects of dark incubation period and explant region on regeneration success were tested. Immature inflorescences were cut into 3 pieces as tip, mid, base and put onto 2mg /L 2,4-dichlorophenoxyacetic acid containing callus induction medium. These explants were taken to regeneration after 6, 9, 13 weeks of dark incubation period. The regeneration capacities of calli were determined as rooting and shooting percentages. Shooting percentages were found to be 72.0 % for 6 weeks of dark incubation and 64.1 % for 9 weeks of dark incubation while it decreases to 26.1 % in 13 weeks of dark incubation period. This showed that prolonged dark incubation period decreased regeneration capacity of the callus. There was no significant difference in regeneration capacities of tip, mid and base regions of immature inflorescences, which reveals the potential of every region of inflorescence to be used as explant source in further transformation studies.
Besides regeneration studies, optimization of transformation parameters for Turkish wheat cultivar Yü === regir by using Agrobacterium tumefaciens AGLI containing binary vector pALl56 was performed. Transformation efficiencies were determined by monitoring the transient expression of uidA gene via histochemical GUS assay. Three to four weeks old calli were found to be more responsive to Agrobacterium-mediated transformation. Different media were tested for utilization during co-cultivation period. It was found that including phenolic compound acetosyringone along with ascorbic acid as an antioxidant was essential for succesful transformation.
|