Specialized power-electronic apparatus for harnessing electrical power from kinetic hydropower plants
This thesis introduces a power electronic interface for a kinetic hydropower generation platform that enables extraction of electric power from a free-flowing water source such as a river or a stream. The implemented system transfers power from a high-frequency permanent magnet synchronous generator...
Main Author: | |
---|---|
Other Authors: | |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/1993/8901 |
Summary: | This thesis introduces a power electronic interface for a kinetic hydropower generation platform that enables extraction of electric power from a free-flowing water source such as a river or a stream. The implemented system transfers power from a high-frequency permanent magnet synchronous generator (PMSG) to a 60-Hz load. Special configurations and control techniques were developed to cater for the long distance between the generator and the power interface; and also to address the wide range of the PMSG frequency and voltage variations. The proposed power-electronic interface was constructed and tested in the laboratory as well as in the field.
The thesis also introduces two feasible methods for controlling a hydrokinetic plant to supply islanded loads or to deliver the maximum power available from the turbine-generator to the utility network. Application of multiple turbines in a kinetic farm was also investigated, and different approaches to controlling hydrokinetic turbines were developed. |
---|