The effect of cracking on the deflection basin of flexible pavements

Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and reha...

Full description

Bibliographic Details
Main Author: Omar, Hadi Mohamed
Language:en_US
Published: 2007
Online Access:http://hdl.handle.net/1993/773
Description
Summary:Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and rehabilitation. To make the right choice from many potentially feasible maintenance and rehabilitation measures, the engineer must base his decision on a rational evaluation of the mechanical properties of the materials in the existing pavement structure. One of the parameters in terms of pavement response are the deflections; these are of interest to this particular study. The Falling Weight Deflectometer (FWD) has been developed specifically for the purpose of obtaining deflection measurements in order to determine the in-situ elastic moduli. The profile of the deflection at the surface of the pavement is known as the deflection basin, because it resembles a bowl-shaped depression. The magnitude of the deflections and the basin shape are functions of the number of layers making up the pavement cross section, their thicknesses, and their moduli values. A variety of multi-layered linear elastic pavement models are available for use at this present time. A general-purpose finite-element program called ANSYS developed by Swanson Analysis System is very powerful and is capable of solving a layered system such as the pavement. A finite element model was developed to study the effect of the crack on the predicted deflection bowls. A general-purpose finite-element program was used in this study due to its ability to solve this problem and because of the availability of the program. A hypothetical crack problem was assumed and modeled in different ways. The crack depth, crack width, and distance of the crack from the loading point were among the many parameters that were investigated. Considering the shape of the deflection basin, it is very important to study the effect of the crack on this bowl, when and where the cracks can be ignored, and when they would not play a significant effect. This study also addresses the importance of the field data and how the observed deflection basins compare with the p edicted ones especially in aged pavements. This study has concluded that the location of a crack from the loading point is very significant to the deflection basin.