Effects of dough mixing on gluten proteins

The gluten proteins, gliadin and glutenin, are mainly responsible for the viscoelastic properties unique to wheat flour dough. This study was undertaken to evaluate the changes occurring to the gluten proteins during dough mixing and to examine how these proteins, related to breadmaking quality, par...

Full description

Bibliographic Details
Main Author: Dupuis, Brigitte
Language:en_US
Published: 2007
Online Access:http://hdl.handle.net/1993/2209
id ndltd-MANITOBA-oai-mspace.lib.umanitoba.ca-1993-2209
record_format oai_dc
spelling ndltd-MANITOBA-oai-mspace.lib.umanitoba.ca-1993-22092014-01-31T03:31:12Z Effects of dough mixing on gluten proteins Dupuis, Brigitte The gluten proteins, gliadin and glutenin, are mainly responsible for the viscoelastic properties unique to wheat flour dough. This study was undertaken to evaluate the changes occurring to the gluten proteins during dough mixing and to examine how these proteins, related to breadmaking quality, participate in the mechanism of dough development and breakdown. Flours from four different cultivars, were selected for their wide range of nixing strength. Flour-water doughs and doughs containing potassium iodate or N-ethyl-maleimide were undermixed, mixed to peak development, and overmixed. A small scale fractionation procedure, coupled with a selective precipitation method, was used to obtain six protein fracti ns: salt-soluble (SS), ethanol-soluble (ES) gliadin and glutenin, acetic acid-soluble (AS) gliadin and glutenin, and acetic acid-insoluble (AI) glutenin. The presence of glutenin in the SS fraction and the formation of a foam layer during fractionation of doughs suggested that mixing altered the conformation of glutenin and/or induced gliadin-glutenin interaction to an extent sufficient to enhance the solubility and surface activity of some of the gluten proteins. Protein solubility distribution and electrophoretic results provided convincing evidence for the existence of genotype-specific gliadin-glutenin interaction. Results showed that all cultivars exhibited gliadin-glutenin interaction during mixing and the degree of interaction was inversely related to mixing strength. Analysis by reversed-phase high-performance liquid chromatography of changes in subunit composition during mixing of three glutenin fractions revealed some variation in subunits related to quality. Allelic differences were most pronounced for the 1Dx subunits (1Dx2 versus 1Dx5) and much less evident for 1Ax and 1B subunits. The 1Ax and 1Bx subunits appeared to be less affected by the mixing process. Using size-exclusion high-performance, liquid chromatography, the presence of glutenin comprised only of LMW-GS (LMW glutenin) was identified in the ES, AS and AI fractions of glutenin. LMW glutenin, like the gliadins, may be involved in interaction with the glutenin of the larger Mr. Results from this study provide additional support for glutenin breakdown and the sulphydryl-disulfide (-SH/SS-) interchange reaction as important mechanisms in dough mixing and offer convincing evidence for gliadin-glutenin interaction as an additional mechanism. This study concludes that glutenin breakdown occurs by both depolymerization and disaggregation and that the -SH/-SS- interchange reaction, like gliadin-glutenin interaction, exerts its functional importance at a higher structural level than the subunit level. (Abstract shortened by UMI.) 2007-05-25T18:32:14Z 2007-05-25T18:32:14Z 1999-01-01T00:00:00Z http://hdl.handle.net/1993/2209 en_US
collection NDLTD
language en_US
sources NDLTD
description The gluten proteins, gliadin and glutenin, are mainly responsible for the viscoelastic properties unique to wheat flour dough. This study was undertaken to evaluate the changes occurring to the gluten proteins during dough mixing and to examine how these proteins, related to breadmaking quality, participate in the mechanism of dough development and breakdown. Flours from four different cultivars, were selected for their wide range of nixing strength. Flour-water doughs and doughs containing potassium iodate or N-ethyl-maleimide were undermixed, mixed to peak development, and overmixed. A small scale fractionation procedure, coupled with a selective precipitation method, was used to obtain six protein fracti ns: salt-soluble (SS), ethanol-soluble (ES) gliadin and glutenin, acetic acid-soluble (AS) gliadin and glutenin, and acetic acid-insoluble (AI) glutenin. The presence of glutenin in the SS fraction and the formation of a foam layer during fractionation of doughs suggested that mixing altered the conformation of glutenin and/or induced gliadin-glutenin interaction to an extent sufficient to enhance the solubility and surface activity of some of the gluten proteins. Protein solubility distribution and electrophoretic results provided convincing evidence for the existence of genotype-specific gliadin-glutenin interaction. Results showed that all cultivars exhibited gliadin-glutenin interaction during mixing and the degree of interaction was inversely related to mixing strength. Analysis by reversed-phase high-performance liquid chromatography of changes in subunit composition during mixing of three glutenin fractions revealed some variation in subunits related to quality. Allelic differences were most pronounced for the 1Dx subunits (1Dx2 versus 1Dx5) and much less evident for 1Ax and 1B subunits. The 1Ax and 1Bx subunits appeared to be less affected by the mixing process. Using size-exclusion high-performance, liquid chromatography, the presence of glutenin comprised only of LMW-GS (LMW glutenin) was identified in the ES, AS and AI fractions of glutenin. LMW glutenin, like the gliadins, may be involved in interaction with the glutenin of the larger Mr. Results from this study provide additional support for glutenin breakdown and the sulphydryl-disulfide (-SH/SS-) interchange reaction as important mechanisms in dough mixing and offer convincing evidence for gliadin-glutenin interaction as an additional mechanism. This study concludes that glutenin breakdown occurs by both depolymerization and disaggregation and that the -SH/-SS- interchange reaction, like gliadin-glutenin interaction, exerts its functional importance at a higher structural level than the subunit level. (Abstract shortened by UMI.)
author Dupuis, Brigitte
spellingShingle Dupuis, Brigitte
Effects of dough mixing on gluten proteins
author_facet Dupuis, Brigitte
author_sort Dupuis, Brigitte
title Effects of dough mixing on gluten proteins
title_short Effects of dough mixing on gluten proteins
title_full Effects of dough mixing on gluten proteins
title_fullStr Effects of dough mixing on gluten proteins
title_full_unstemmed Effects of dough mixing on gluten proteins
title_sort effects of dough mixing on gluten proteins
publishDate 2007
url http://hdl.handle.net/1993/2209
work_keys_str_mv AT dupuisbrigitte effectsofdoughmixingonglutenproteins
_version_ 1716628421906268160