Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule

Cryptosporidium is a common protozoan parasite that causes cryptosporidiosis, a severe gastrointestinal disease. Currently, there is no antibiotic available to treat the disease. Cryptosporidium has been responsible for several waterborne disease outbreaks in the United States. The largest cryptospo...

Full description

Bibliographic Details
Main Author: Douglas, Racquel Rena
Other Authors: Ronald F. Malone
Format: Others
Language:en
Published: LSU 2007
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-11162007-084951/
id ndltd-LSU-oai-etd.lsu.edu-etd-11162007-084951
record_format oai_dc
spelling ndltd-LSU-oai-etd.lsu.edu-etd-11162007-0849512013-01-07T22:51:25Z Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule Douglas, Racquel Rena Environmental Studies Cryptosporidium is a common protozoan parasite that causes cryptosporidiosis, a severe gastrointestinal disease. Currently, there is no antibiotic available to treat the disease. Cryptosporidium has been responsible for several waterborne disease outbreaks in the United States. The largest cryptosporidiosis outbreak in United States history occurred in Milwaukee, Wisconsin in spring 1993. The vulnerability of the United State drinking water supply to waterborne disease outbreak is still prevalent nearly 15 years after the Milwaukee outbreak. In order to effectively control Cryptosporidium, the EPA has strengthened the regulations on turbidity control for filtration performance by implementing the Long Term 1 Enhanced Surface Water Treatment Rule. The Long Term 1 Enhanced Surface Water Treatment Rule applies to all public water systems that serve fewer than 10,000 people and use surface water or ground water under the direct influence of surface water. The turbidity level of combined filter effluent water samples must be less than or equal to 0.3 NTU in at least 95% of the measurements taken each month, with no samples exceeding 1 NTU. Systems meeting these filter performance requirements are presumed to achieve at least a 2-log removal (99%) of Cryptosporidium. The purpose of this research is to evaluate compliance with the Long Term 1 Enhanced Surface Water Treatment Rule for a potable water treatment system operated by an oil refinery in southeast Louisiana that has been experiencing turbidity spikes since February 2006. The turbidity and disinfection data obtained from this facility will be examined. This study found that, despite meeting compliance requirements of the Long Term 1 Enhanced Surface Water Treatment Rule, there were still several areas of concern within the treatment process. Additional information is needed to determine the effectiveness of the turbidity data management tool. The regression analysis showed that raw water turbidity could not accurately predict daily average turbidity. Recommendations were made regarding comprehensive system evaluation, monitoring, improvements in treatment technique, and best practices. Although this study concluded in September 2006, significant improvements were made to the gravity sand filters. In April 2007, an ultrafiltration system replaced the gravity sand filters in the potable water treatment system. Ronald F. Malone Michael W. Wascom Margaret A. Reams LSU 2007-11-16 text application/pdf http://etd.lsu.edu/docs/available/etd-11162007-084951/ http://etd.lsu.edu/docs/available/etd-11162007-084951/ en unrestricted I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.
collection NDLTD
language en
format Others
sources NDLTD
topic Environmental Studies
spellingShingle Environmental Studies
Douglas, Racquel Rena
Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
description Cryptosporidium is a common protozoan parasite that causes cryptosporidiosis, a severe gastrointestinal disease. Currently, there is no antibiotic available to treat the disease. Cryptosporidium has been responsible for several waterborne disease outbreaks in the United States. The largest cryptosporidiosis outbreak in United States history occurred in Milwaukee, Wisconsin in spring 1993. The vulnerability of the United State drinking water supply to waterborne disease outbreak is still prevalent nearly 15 years after the Milwaukee outbreak. In order to effectively control Cryptosporidium, the EPA has strengthened the regulations on turbidity control for filtration performance by implementing the Long Term 1 Enhanced Surface Water Treatment Rule. The Long Term 1 Enhanced Surface Water Treatment Rule applies to all public water systems that serve fewer than 10,000 people and use surface water or ground water under the direct influence of surface water. The turbidity level of combined filter effluent water samples must be less than or equal to 0.3 NTU in at least 95% of the measurements taken each month, with no samples exceeding 1 NTU. Systems meeting these filter performance requirements are presumed to achieve at least a 2-log removal (99%) of Cryptosporidium. The purpose of this research is to evaluate compliance with the Long Term 1 Enhanced Surface Water Treatment Rule for a potable water treatment system operated by an oil refinery in southeast Louisiana that has been experiencing turbidity spikes since February 2006. The turbidity and disinfection data obtained from this facility will be examined. This study found that, despite meeting compliance requirements of the Long Term 1 Enhanced Surface Water Treatment Rule, there were still several areas of concern within the treatment process. Additional information is needed to determine the effectiveness of the turbidity data management tool. The regression analysis showed that raw water turbidity could not accurately predict daily average turbidity. Recommendations were made regarding comprehensive system evaluation, monitoring, improvements in treatment technique, and best practices. Although this study concluded in September 2006, significant improvements were made to the gravity sand filters. In April 2007, an ultrafiltration system replaced the gravity sand filters in the potable water treatment system.
author2 Ronald F. Malone
author_facet Ronald F. Malone
Douglas, Racquel Rena
author Douglas, Racquel Rena
author_sort Douglas, Racquel Rena
title Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
title_short Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
title_full Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
title_fullStr Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
title_full_unstemmed Evaluation of Compliance with the Long Term 1 Enhanced Surface Water Treatment Rule
title_sort evaluation of compliance with the long term 1 enhanced surface water treatment rule
publisher LSU
publishDate 2007
url http://etd.lsu.edu/docs/available/etd-11162007-084951/
work_keys_str_mv AT douglasracquelrena evaluationofcompliancewiththelongterm1enhancedsurfacewatertreatmentrule
_version_ 1716477547665948672