Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling

Dispersion, deposition, and suspension of particulate materials in the carrier fluid play a significant role in the oil industry. Increasing the cuttings transport performance in deviated wells is difficult due to the rolling/sliding transport, and cuttings settling on the low side of the annulus. I...

Full description

Bibliographic Details
Main Author: Demiralp, Yasin
Other Authors: Tyagi, Mayank
Format: Others
Language:en
Published: LSU 2014
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-11072014-140615/
id ndltd-LSU-oai-etd.lsu.edu-etd-11072014-140615
record_format oai_dc
spelling ndltd-LSU-oai-etd.lsu.edu-etd-11072014-1406152014-12-02T03:50:40Z Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling Demiralp, Yasin Petroleum Engineering Dispersion, deposition, and suspension of particulate materials in the carrier fluid play a significant role in the oil industry. Increasing the cuttings transport performance in deviated wells is difficult due to the rolling/sliding transport, and cuttings settling on the low side of the annulus. Insufficient cuttings transport may lead to some crucial problems such as pipe sticking, increasing in torque and drag, material damage and bed cementing quality. Increasing flow rates and improving mud properties may not be applicable for a proper hole cleaning because of the hydraulic and mechanical limitations. In such cases, additional pressure may be generated, and this causes formation fractures and drilling fluid losses. Under these circumstances, the other major contribution to cuttings transport is provided by drill-pipe rotation. In this study, the effect of drill-pipe rotation on cuttings transport behavior is investigated for eccentric horizontal wells. Whirling motion of drill-pipe is also analyzed. During drilling, drill-pipe is subjected to axial, lateral and torsional loads due to the dynamic vibrations. These loads cause that drill-pipe to lose its stability and generate snaking and/or whirling type of motion. Dynamic behavior of drill-pipe plays a significant role on cuttings transport and stationary bed removal. Turbulence modeling becomes very complicated when cuttings transport includes deposition and sliding effects. Advanced turbulence models are required to get accurate flow predictions while optimizing computational resources requirements. Unsteady SST k-ω turbulence model is applied due to its practicability and reliability in predicting cuttings transport behavior. Discrete phase is modeled with discrete element method (DEM) by including particle-particle and particle-fluid interactions with a commercial ANSYS FLUENTTM 15.0 CFD package using LSU high performance computing (HPC) resources. It is concluded that cuttings concentration significantly decreases with increasing flow rate. Drill-pipe rotation around its own axis causes cuttings swaying and distribute asymmetrically along the circumferential direction. Orbital motion of the drill-pipe contributes more to cuttings transport performance. Low whirling rotary leads to increase in annular pressure losses in low flow rates. In the turbulent flow regime, however, annular pressure losses increase with increasing whirling speed. Tyagi, Mayank Wojtanowicz, Andrew K. Nandakumar, Krishnaswamy LSU 2014-12-01 text application/pdf http://etd.lsu.edu/docs/available/etd-11072014-140615/ http://etd.lsu.edu/docs/available/etd-11072014-140615/ en restricted I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.
collection NDLTD
language en
format Others
sources NDLTD
topic Petroleum Engineering
spellingShingle Petroleum Engineering
Demiralp, Yasin
Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
description Dispersion, deposition, and suspension of particulate materials in the carrier fluid play a significant role in the oil industry. Increasing the cuttings transport performance in deviated wells is difficult due to the rolling/sliding transport, and cuttings settling on the low side of the annulus. Insufficient cuttings transport may lead to some crucial problems such as pipe sticking, increasing in torque and drag, material damage and bed cementing quality. Increasing flow rates and improving mud properties may not be applicable for a proper hole cleaning because of the hydraulic and mechanical limitations. In such cases, additional pressure may be generated, and this causes formation fractures and drilling fluid losses. Under these circumstances, the other major contribution to cuttings transport is provided by drill-pipe rotation. In this study, the effect of drill-pipe rotation on cuttings transport behavior is investigated for eccentric horizontal wells. Whirling motion of drill-pipe is also analyzed. During drilling, drill-pipe is subjected to axial, lateral and torsional loads due to the dynamic vibrations. These loads cause that drill-pipe to lose its stability and generate snaking and/or whirling type of motion. Dynamic behavior of drill-pipe plays a significant role on cuttings transport and stationary bed removal. Turbulence modeling becomes very complicated when cuttings transport includes deposition and sliding effects. Advanced turbulence models are required to get accurate flow predictions while optimizing computational resources requirements. Unsteady SST k-ω turbulence model is applied due to its practicability and reliability in predicting cuttings transport behavior. Discrete phase is modeled with discrete element method (DEM) by including particle-particle and particle-fluid interactions with a commercial ANSYS FLUENTTM 15.0 CFD package using LSU high performance computing (HPC) resources. It is concluded that cuttings concentration significantly decreases with increasing flow rate. Drill-pipe rotation around its own axis causes cuttings swaying and distribute asymmetrically along the circumferential direction. Orbital motion of the drill-pipe contributes more to cuttings transport performance. Low whirling rotary leads to increase in annular pressure losses in low flow rates. In the turbulent flow regime, however, annular pressure losses increase with increasing whirling speed.
author2 Tyagi, Mayank
author_facet Tyagi, Mayank
Demiralp, Yasin
author Demiralp, Yasin
author_sort Demiralp, Yasin
title Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
title_short Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
title_full Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
title_fullStr Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
title_full_unstemmed Effects Of Drill-pipe Whirling Motion On Cuttings Transport Performance For Horizontal Drilling
title_sort effects of drill-pipe whirling motion on cuttings transport performance for horizontal drilling
publisher LSU
publishDate 2014
url http://etd.lsu.edu/docs/available/etd-11072014-140615/
work_keys_str_mv AT demiralpyasin effectsofdrillpipewhirlingmotiononcuttingstransportperformanceforhorizontaldrilling
_version_ 1716725769750708224