Investigation of Structure-Property Relationships of Heavy-Fermion Materials

This work focuses on how local structural features influence large effective masses, magnetism, and superconductivity that are yet to be understood in heavy-fermion materials. Three sets of structurally-related materials are discussed in light of dimensionality, layering effects, choice of transitio...

Full description

Bibliographic Details
Main Author: Macaluso, Robin
Other Authors: Brian Hales
Format: Others
Language:en
Published: LSU 2004
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-09172004-141159/
id ndltd-LSU-oai-etd.lsu.edu-etd-09172004-141159
record_format oai_dc
spelling ndltd-LSU-oai-etd.lsu.edu-etd-09172004-1411592013-01-07T22:49:33Z Investigation of Structure-Property Relationships of Heavy-Fermion Materials Macaluso, Robin Chemistry This work focuses on how local structural features influence large effective masses, magnetism, and superconductivity that are yet to be understood in heavy-fermion materials. Three sets of structurally-related materials are discussed in light of dimensionality, layering effects, choice of transition metal, coordination, and structural distortions: LnnMIn3n+2 (Ln = La, Ce; n = 1, 2, ; M = Co, Rh, Ir), CePdGa6, and Ce2PdGa12, and CeNiSb3. The LnnMIn3n+2 (n = 1, 2, ; Ln = La, Ce; M = Rh, Ir) intergrowth homologous series presents a unique opportunity to study structure-property relationships. LnnMIn3n+2 (Ln = La, Ce; n = 1, 2; M = Co, Rh, Ir) adopt a tetragonal structure in the space group P4/mmm. Antiferromagnetism and/or unconventional superconductivity have been found in CeCoIn5, CeRhIn5, CeIrIn5, and Ce2RhIn8. Structural trends are compared with ground state properties. Single crystals of LnPdGa6 (Ln = La, Ce) and Ln2PdGa12 (Ln = La, Ce) have been synthesized in excess Ga and characterized by X-ray diffraction. LnPdGa6 (Ln = La, Ce) form in the P4/mmm space group with lattice parameters a = b ~ 4.4 Å and c ~ 7.9 Å. Ce f-moments order antiferromagnetically along the c-axis at TN = 5.5 K. Ln2PdGa12 (Ln = La, Ce) crystallize in the tetragonal P4/nbm space group, with lattice parameters of a = 6.0370(3) Å and c = 15.4910(7) Å. It orders antiferromagnetically at TN ~ 11 K, and a spin reconfiguration transition to canted antiferromagnetism occurs at 5 K. Structure-property relationships with the CePdGa_6 are discussed. CeNiSb3 has been prepared from an Sb flux or from reaction of Ce, NiSb, and Sb above 1123 K. It crystallizes in the orthorhombic space group Pbcm with lattice parameters a = 12.6340(7) Å , b = 6.2037(3) Å , and c = 18.3698(9) Å. Its structure consists of buckled square Sb nets and layers of highly distorted edge- and face-sharing NiSb6 octahedra. Located between the [Sb] and [NiSb2] are the Ce atoms, in monocapped square antiprismatic coordination. Resistivity measurements reveal a shallow minimum near 25 K that is suggestive of Kondo lattice behaviour, followed by a sharp decrease below 6 K. Brian Hales Julia Chan David Young Darryl Henry George Stanley LSU 2004-09-23 text application/pdf http://etd.lsu.edu/docs/available/etd-09172004-141159/ http://etd.lsu.edu/docs/available/etd-09172004-141159/ en unrestricted I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.
collection NDLTD
language en
format Others
sources NDLTD
topic Chemistry
spellingShingle Chemistry
Macaluso, Robin
Investigation of Structure-Property Relationships of Heavy-Fermion Materials
description This work focuses on how local structural features influence large effective masses, magnetism, and superconductivity that are yet to be understood in heavy-fermion materials. Three sets of structurally-related materials are discussed in light of dimensionality, layering effects, choice of transition metal, coordination, and structural distortions: LnnMIn3n+2 (Ln = La, Ce; n = 1, 2, ; M = Co, Rh, Ir), CePdGa6, and Ce2PdGa12, and CeNiSb3. The LnnMIn3n+2 (n = 1, 2, ; Ln = La, Ce; M = Rh, Ir) intergrowth homologous series presents a unique opportunity to study structure-property relationships. LnnMIn3n+2 (Ln = La, Ce; n = 1, 2; M = Co, Rh, Ir) adopt a tetragonal structure in the space group P4/mmm. Antiferromagnetism and/or unconventional superconductivity have been found in CeCoIn5, CeRhIn5, CeIrIn5, and Ce2RhIn8. Structural trends are compared with ground state properties. Single crystals of LnPdGa6 (Ln = La, Ce) and Ln2PdGa12 (Ln = La, Ce) have been synthesized in excess Ga and characterized by X-ray diffraction. LnPdGa6 (Ln = La, Ce) form in the P4/mmm space group with lattice parameters a = b ~ 4.4 Å and c ~ 7.9 Å. Ce f-moments order antiferromagnetically along the c-axis at TN = 5.5 K. Ln2PdGa12 (Ln = La, Ce) crystallize in the tetragonal P4/nbm space group, with lattice parameters of a = 6.0370(3) Å and c = 15.4910(7) Å. It orders antiferromagnetically at TN ~ 11 K, and a spin reconfiguration transition to canted antiferromagnetism occurs at 5 K. Structure-property relationships with the CePdGa_6 are discussed. CeNiSb3 has been prepared from an Sb flux or from reaction of Ce, NiSb, and Sb above 1123 K. It crystallizes in the orthorhombic space group Pbcm with lattice parameters a = 12.6340(7) Å , b = 6.2037(3) Å , and c = 18.3698(9) Å. Its structure consists of buckled square Sb nets and layers of highly distorted edge- and face-sharing NiSb6 octahedra. Located between the [Sb] and [NiSb2] are the Ce atoms, in monocapped square antiprismatic coordination. Resistivity measurements reveal a shallow minimum near 25 K that is suggestive of Kondo lattice behaviour, followed by a sharp decrease below 6 K.
author2 Brian Hales
author_facet Brian Hales
Macaluso, Robin
author Macaluso, Robin
author_sort Macaluso, Robin
title Investigation of Structure-Property Relationships of Heavy-Fermion Materials
title_short Investigation of Structure-Property Relationships of Heavy-Fermion Materials
title_full Investigation of Structure-Property Relationships of Heavy-Fermion Materials
title_fullStr Investigation of Structure-Property Relationships of Heavy-Fermion Materials
title_full_unstemmed Investigation of Structure-Property Relationships of Heavy-Fermion Materials
title_sort investigation of structure-property relationships of heavy-fermion materials
publisher LSU
publishDate 2004
url http://etd.lsu.edu/docs/available/etd-09172004-141159/
work_keys_str_mv AT macalusorobin investigationofstructurepropertyrelationshipsofheavyfermionmaterials
_version_ 1716477055972933632