Beyond the Tails of the Colored Jones Polynomial

In [2] Armond showed that the heads and tails of the colored Jones polynomial exist for adequate links. This was also shown independently by Garoufalidis and Le for alternating links in [8]. Here we study coefficients of the "difference quotient" of the colored Jones polynomial. We begin w...

Full description

Bibliographic Details
Main Author: Peng, Jun
Other Authors: Dasbach, Oliver T
Format: Others
Language:en
Published: LSU 2016
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-07012016-104111/
Description
Summary:In [2] Armond showed that the heads and tails of the colored Jones polynomial exist for adequate links. This was also shown independently by Garoufalidis and Le for alternating links in [8]. Here we study coefficients of the "difference quotient" of the colored Jones polynomial. We begin with the fundamentals of knot theory. A brief introduction to skein theory is also included to illustrate those necessary tools. In Chapter 3 we give an explicit expression for the first coefficient of the relative difference. In Chapter 4 we develop a formula of t_2, the number of regions with exactly 2 crossings in the diagram of a link, for a specific class of alternating links, and then improve with this result the upper bound of the volume for a hyperbolic alternating link which Dasbach and Tsvietkova gave in the coefficients of the colored Jones polynomial in [7].