Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient

Coastal wetlands provide several valuable services, such as carbon (C) storage and nitrogen (N) removal. Although wetlands serve as net C sinks, wetland soils release greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Wetlands can buffer the influx of nit...

Full description

Bibliographic Details
Main Author: Ceresnak, Natalie
Other Authors: Roberts, Brian
Format: Others
Language:en
Published: LSU 2017
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-05312017-110519/
id ndltd-LSU-oai-etd.lsu.edu-etd-05312017-110519
record_format oai_dc
spelling ndltd-LSU-oai-etd.lsu.edu-etd-05312017-1105192017-06-10T04:13:32Z Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient Ceresnak, Natalie Oceanography Coastal wetlands provide several valuable services, such as carbon (C) storage and nitrogen (N) removal. Although wetlands serve as net C sinks, wetland soils release greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Wetlands can buffer the influx of nitrate (NO3-) by transforming it into gaseous N (N2O, N2) through denitrification microbial pathway. Salinity is a regulator of soil biogeochemistry and long- (e.g. saltwater intrusion) and short-term (e.g. storm surges, river diversions) exposures may affect soil GHG production and denitrification. In this study, soil GHG production and denitrification enzyme activity (DEA) rates were examined over the course of a growing season (May, July, October) in soils from a freshwater, intermediate, brackish, and saline marsh. The response of GHG production and DEA rates were determined both under ambient and altered salinities (0, 10, 20, 30 psu). Soil CO2 and CH4 production rates decreased by 83% and >99%, respectively from the freshwater to saline marsh at ambient salinity. Soil N2O production rates did not vary across marshes, whereas, DEA was highest in May in the intermediate and brackish marshes. Short-term salinity exposure increased soil CO2 production in May and October, however, in July, soils displayed lower quality organic matter (high soil C:N), constraining respiration rates. Short-term salinity exposure decreased CH4 production, but increased N2O production in all months. Soil DEA displayed minor decreases with short-term salinity exposure. Soil GHG production in low salinity marshes (e.g. freshwater) had stronger responses to short-term salinity exposure than high salinity marshes (e.g. saline). Collectively, these results indicate that GHG and DEA rates do not always show the same responses to long-term salinity exposure, which results in shifts of vegetation structures, microbial communities, and soil properties compared to short-term salinity exposure. Sustained shifts to fresher conditions along salinity gradients may increase soil CO2 and CH4 production and short-term salinity exposure may increase CH4 production, but decrease soil CO2 and N2O production. Restoration activities (i.e. river diversions) that consider the interactive effect of salinity on C and N cycling can help reduce GHG footprint and increase nutrient buffering capacities of coastal wetlands. Roberts, Brian Turner, R. Eugene Quirk, Tracy LSU 2017-06-09 text application/pdf http://etd.lsu.edu/docs/available/etd-05312017-110519/ http://etd.lsu.edu/docs/available/etd-05312017-110519/ en unrestricted I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.
collection NDLTD
language en
format Others
sources NDLTD
topic Oceanography
spellingShingle Oceanography
Ceresnak, Natalie
Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
description Coastal wetlands provide several valuable services, such as carbon (C) storage and nitrogen (N) removal. Although wetlands serve as net C sinks, wetland soils release greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Wetlands can buffer the influx of nitrate (NO3-) by transforming it into gaseous N (N2O, N2) through denitrification microbial pathway. Salinity is a regulator of soil biogeochemistry and long- (e.g. saltwater intrusion) and short-term (e.g. storm surges, river diversions) exposures may affect soil GHG production and denitrification. In this study, soil GHG production and denitrification enzyme activity (DEA) rates were examined over the course of a growing season (May, July, October) in soils from a freshwater, intermediate, brackish, and saline marsh. The response of GHG production and DEA rates were determined both under ambient and altered salinities (0, 10, 20, 30 psu). Soil CO2 and CH4 production rates decreased by 83% and >99%, respectively from the freshwater to saline marsh at ambient salinity. Soil N2O production rates did not vary across marshes, whereas, DEA was highest in May in the intermediate and brackish marshes. Short-term salinity exposure increased soil CO2 production in May and October, however, in July, soils displayed lower quality organic matter (high soil C:N), constraining respiration rates. Short-term salinity exposure decreased CH4 production, but increased N2O production in all months. Soil DEA displayed minor decreases with short-term salinity exposure. Soil GHG production in low salinity marshes (e.g. freshwater) had stronger responses to short-term salinity exposure than high salinity marshes (e.g. saline). Collectively, these results indicate that GHG and DEA rates do not always show the same responses to long-term salinity exposure, which results in shifts of vegetation structures, microbial communities, and soil properties compared to short-term salinity exposure. Sustained shifts to fresher conditions along salinity gradients may increase soil CO2 and CH4 production and short-term salinity exposure may increase CH4 production, but decrease soil CO2 and N2O production. Restoration activities (i.e. river diversions) that consider the interactive effect of salinity on C and N cycling can help reduce GHG footprint and increase nutrient buffering capacities of coastal wetlands.
author2 Roberts, Brian
author_facet Roberts, Brian
Ceresnak, Natalie
author Ceresnak, Natalie
author_sort Ceresnak, Natalie
title Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
title_short Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
title_full Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
title_fullStr Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
title_full_unstemmed Differential Responses of Soil Greenhouse Gas Production and Denitrification to Salinity Alterations Along a Wetland Salinity Gradient
title_sort differential responses of soil greenhouse gas production and denitrification to salinity alterations along a wetland salinity gradient
publisher LSU
publishDate 2017
url http://etd.lsu.edu/docs/available/etd-05312017-110519/
work_keys_str_mv AT ceresnaknatalie differentialresponsesofsoilgreenhousegasproductionanddenitrificationtosalinityalterationsalongawetlandsalinitygradient
_version_ 1718456744198275072