Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015
Dans un plan stratifié, le calcul des bornes de strates peut se faire de plusieurs façons. On peut se fier à un jugement personnel et séparer les unités de la population en se basant sur la distribution de la variable de stratification. D’autres méthodes scientifiques et rigoureuses donnent un meill...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | French |
Published: |
Université Laval
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/20.500.11794/66434 |
id |
ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-66434 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-664342020-12-10T05:09:14Z Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 Houimli, Oussama Rivest, Louis-Paul Enquêtes sociales -- Méthodes statistiques. Stratification sociale -- Méthodes statistiques. Ensembles stratifiés. Algorithmes. Variables (Mathématiques) Dans un plan stratifié, le calcul des bornes de strates peut se faire de plusieurs façons. On peut se fier à un jugement personnel et séparer les unités de la population en se basant sur la distribution de la variable de stratification. D’autres méthodes scientifiques et rigoureuses donnent un meilleur résultat, dont les algorithmes de cum √f, Sethi et Kosak. Pour les populations asymétriques, telles que retrouvées dans les enquêtes entreprises, l’utilisation d’une strate recensement permet de diminuer la taille d’échantillon et donner des estimations plus fiables. Parfois, la variable de stratification utilisée dans l’élaboration du plan de sondage ne garantit pas l’obtention de la précision cible pour toutes les variables d’intérêt de l’enquête. Utiliser la variable d’intérêt la plus difficile à estimer, comme variable de stratification, permet de garantir un CV cible minimal pour toutes les autres variables, mais engendre des grandes tailles d’échantillon. In a stratified sampling design, the calculation of the stratum boundaries can be done in several ways. We can rely on personal judgment and separate the units of the population based on the distribution of the stratification variable. Other scientific and rigorous methods give a better result, including the algorithms of cum √f, Sethi and Kosak. For asymmetric populations, as found in the business surveys, the use of a census stratum reduces the sample size and gives more reliable estimates. Univariate methods, those that use a single stratification variable in calculating the boundaries, do not guarantee that the target precision will be obtained for all the variables of interest in the survey. Using the variable of interest that is the most difficult to estimate, as a stratification variable, makes it possible to guarantee a minimum target CV for all the other variables, but generates large sample sizes. 2020 info:eu-repo/semantics/openAccess https://corpus.ulaval.ca/jspui/conditions.jsp info:eu-repo/semantics/masterThesis http://hdl.handle.net/20.500.11794/66434 fre 1 ressource en ligne (viii, 56 pages) application/pdf Université Laval |
collection |
NDLTD |
language |
French |
format |
Dissertation |
sources |
NDLTD |
topic |
Enquêtes sociales -- Méthodes statistiques. Stratification sociale -- Méthodes statistiques. Ensembles stratifiés. Algorithmes. Variables (Mathématiques) |
spellingShingle |
Enquêtes sociales -- Méthodes statistiques. Stratification sociale -- Méthodes statistiques. Ensembles stratifiés. Algorithmes. Variables (Mathématiques) Houimli, Oussama Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
description |
Dans un plan stratifié, le calcul des bornes de strates peut se faire de plusieurs façons. On peut se fier à un jugement personnel et séparer les unités de la population en se basant sur la distribution de la variable de stratification. D’autres méthodes scientifiques et rigoureuses donnent un meilleur résultat, dont les algorithmes de cum √f, Sethi et Kosak. Pour les populations asymétriques, telles que retrouvées dans les enquêtes entreprises, l’utilisation d’une strate recensement permet de diminuer la taille d’échantillon et donner des estimations plus fiables. Parfois, la variable de stratification utilisée dans l’élaboration du plan de sondage ne garantit pas l’obtention de la précision cible pour toutes les variables d’intérêt de l’enquête. Utiliser la variable d’intérêt la plus difficile à estimer, comme variable de stratification, permet de garantir un CV cible minimal pour toutes les autres variables, mais engendre des grandes tailles d’échantillon. === In a stratified sampling design, the calculation of the stratum boundaries can be done in several ways. We can rely on personal judgment and separate the units of the population based on the distribution of the stratification variable. Other scientific and rigorous methods give a better result, including the algorithms of cum √f, Sethi and Kosak. For asymmetric populations, as found in the business surveys, the use of a census stratum reduces the sample size and gives more reliable estimates. Univariate methods, those that use a single stratification variable in calculating the boundaries, do not guarantee that the target precision will be obtained for all the variables of interest in the survey. Using the variable of interest that is the most difficult to estimate, as a stratification variable, makes it possible to guarantee a minimum target CV for all the other variables, but generates large sample sizes. |
author2 |
Rivest, Louis-Paul |
author_facet |
Rivest, Louis-Paul Houimli, Oussama |
author |
Houimli, Oussama |
author_sort |
Houimli, Oussama |
title |
Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
title_short |
Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
title_full |
Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
title_fullStr |
Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
title_full_unstemmed |
Étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au Québec en 2015, l'EREFEQ 2015 |
title_sort |
étude des algorithmes de stratification et illustration utilisant la réalisation de l'enquête sur le recrutement, l'emploi et les besoins de formation au québec en 2015, l'erefeq 2015 |
publisher |
Université Laval |
publishDate |
2020 |
url |
http://hdl.handle.net/20.500.11794/66434 |
work_keys_str_mv |
AT houimlioussama etudedesalgorithmesdestratificationetillustrationutilisantlarealisationdelenquetesurlerecrutementlemploietlesbesoinsdeformationauquebecen2015lerefeq2015 |
_version_ |
1719368620247613440 |