Viscoplastic displacement flows in narrow channels

Les écoulements à déplacement se produisent fréquemment dans les applications naturelles et industrielles. Bien que les déplacements Newtoniens aient été pris en considération dans une grande variété d’études théoriques et expérimentales dans les dernières décennies, un nombre considérable de fluide...

Full description

Bibliographic Details
Main Author: Eslami, Ali
Other Authors: Taghavi, Seyed Mohammad
Format: Doctoral Thesis
Language:English
English
Published: Université Laval 2019
Subjects:
Online Access:http://hdl.handle.net/20.500.11794/37153
http://hdl.handle.net/20.500.11794/37153
id ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-37153
record_format oai_dc
collection NDLTD
language English
English
format Doctoral Thesis
sources NDLTD
topic TP 7.5 UL 2019
TP 7.5 UL 2019
Viscoplasticité
Viscoplasticité
Dynamique des fluides
Dynamique des fluides
spellingShingle TP 7.5 UL 2019
TP 7.5 UL 2019
Viscoplasticité
Viscoplasticité
Dynamique des fluides
Dynamique des fluides
Eslami, Ali
Eslami, Ali
Viscoplastic displacement flows in narrow channels
description Les écoulements à déplacement se produisent fréquemment dans les applications naturelles et industrielles. Bien que les déplacements Newtoniens aient été pris en considération dans une grande variété d’études théoriques et expérimentales dans les dernières décennies, un nombre considérable de fluides pratiques présentent des caractéristiques viscoplastiques, rendant la prévision du comportement des écoulements plus difficile. Les écoulement de déplacement viscoplastiques sont généralement contrôlés par un équilibre entre diverses forces, y compris la force visqueuse, la force de flottabilité, la force d’inertie, contrainte d’écoulement, etc., en plus de caractéristiques miscibles et non miscibles. Une compétition entre ces forces peut conduire à des comportements imprévisibles et exotiques de déplacement. Permettant une compréhension approfondie de ces écoulements, dans cette thèse de doctorat nous avons étudié l’écoulement à déplacement d’un fluide viscoplastique par un fluide Newtonien dans une géométrie simple, c.-à-d. un canal étroit et confiné. Dans la première partie de cette thèse (chapitres 1 à 3), nous étudions expérimentalement les écoulements à déplacement non-miscibles d’un fluide viscoplastique par un fluide Newtonien. En particulier, nous analysons le mouvement d’air dans un gel de Carbopol, dans une cellule de Hele-Shaw de section rectangulaire. Cette géométrie est composée de deux plaques parallèles rigides. Nous étudions les résultats en termes d’efficacité de déplacement et de morphologie des modèles d’écoulement. Nous démontrons que les comportements complexes du gel Carbopol, c.-à-d. les fortes propriétés viscoplastiques et les faibles propriétés viscoélastiques, affectent les caractéristiques d’écoulement de déplacement. Ensuite, nous étendons cette étude au déplacement d’un gel de Carbopol par une huile de silicone afin de considérer les effets de la mouillabilité sur l’écoulement. Nous observons qu’une combinaison de comportements viscoplastiques et de mouillabilité exerce un impact significatif sur les modèles d’écoulement à déplacement, pour lesquels quatre régimes d’écoulement différents sont identifiés : un régime capillaire, un régime de contrainte d’écoulement, un régime visqueux et un régime élastoinertiel. Enfin, nous étudions les impacts du rapport d’aspect de la section transversale de la cellule sur les caractéristiques de déplacement viscoplastique. Dans la deuxième partie de cette thèse (chapitres 4 à 5), nous étudions numériquement les écoulements à déplacement miscibles d’un fluide viscoplastique par un fluide Newtonien dans un long canal plan 2D. Pour un déplacement «heavy-light», l’analyse des modèles d’écoulement en fonction de divers paramètres sans dimension nous permet d’identifier trois régimes d’écoulement distincts : déplacements «center-type»/«slump- type», «back flow»/«no-back flow» et déplacement «stable/instable». Nous décrivons les effets du rapport de viscosité des fluides, de la flottabilité, de la contrainte d’écoulement et de l’inclinaison du canal sur les régimes d’écoulement susmentionnés. === Les écoulements à déplacement se produisent fréquemment dans les applications naturelles et industrielles. Bien que les déplacements Newtoniens aient été pris en considération dans une grande variété d’études théoriques et expérimentales dans les dernières décennies, un nombre considérable de fluides pratiques présentent des caractéristiques viscoplastiques, rendant la prévision du comportement des écoulements plus difficile. Les écoulement de déplacement viscoplastiques sont généralement contrôlés par un équilibre entre diverses forces, y compris la force visqueuse, la force de flottabilité, la force d’inertie, contrainte d’écoulement, etc., en plus de caractéristiques miscibles et non miscibles. Une compétition entre ces forces peut conduire à des comportements imprévisibles et exotiques de déplacement. Permettant une compréhension approfondie de ces écoulements, dans cette thèse de doctorat nous avons étudié l’écoulement à déplacement d’un fluide viscoplastique par un fluide Newtonien dans une géométrie simple, c.-à-d. un canal étroit et confiné. Dans la première partie de cette thèse (chapitres 1 à 3), nous étudions expérimentalement les écoulements à déplacement non-miscibles d’un fluide viscoplastique par un fluide Newtonien. En particulier, nous analysons le mouvement d’air dans un gel de Carbopol, dans une cellule de Hele-Shaw de section rectangulaire. Cette géométrie est composée de deux plaques parallèles rigides. Nous étudions les résultats en termes d’efficacité de déplacement et de morphologie des modèles d’écoulement. Nous démontrons que les comportements complexes du gel Carbopol, c.-à-d. les fortes propriétés viscoplastiques et les faibles propriétés viscoélastiques, affectent les caractéristiques d’écoulement de déplacement. Ensuite, nous étendons cette étude au déplacement d’un gel de Carbopol par une huile de silicone afin de considérer les effets de la mouillabilité sur l’écoulement. Nous observons qu’une combinaison de comportements viscoplastiques et de mouillabilité exerce un impact significatif sur les modèles d’écoulement à déplacement, pour lesquels quatre régimes d’écoulement différents sont identifiés : un régime capillaire, un régime de contrainte d’écoulement, un régime visqueux et un régime élastoinertiel. Enfin, nous étudions les impacts du rapport d’aspect de la section transversale de la cellule sur les caractéristiques de déplacement viscoplastique. Dans la deuxième partie de cette thèse (chapitres 4 à 5), nous étudions numériquement les écoulements à déplacement miscibles d’un fluide viscoplastique par un fluide Newtonien dans un long canal plan 2D. Pour un déplacement «heavy-light», l’analyse des modèles d’écoulement en fonction de divers paramètres sans dimension nous permet d’identifier trois régimes d’écoulement distincts : déplacements «center-type»/«slump- type», «back flow»/«no-back flow» et déplacement «stable/instable». Nous décrivons les effets du rapport de viscosité des fluides, de la flottabilité, de la contrainte d’écoulement et de l’inclinaison du canal sur les régimes d’écoulement susmentionnés. === Displacement flows frequently occur in natural and industrial applications. Although Newtonian displacements have been considered in a wide range of theoretical and experimental studies in the recent decades, a considerable number of practical fluids exhibit viscoplastic features, making it hard to predict the flow behaviors. Viscoplastic displacement flows are generally controlled by a balance between a variety of forces, including viscous, buoyant, inertial, yield stress, etc., in addition to miscible and immiscible features. A competition between these forces may lead to exotic, unpredictable displacement flow behaviors. To provide a deep understanding of these flows, in this Ph.D. thesis we investigate the displacement flow of a viscoplastic fluid by a Newtonian fluid in a simple flow geometry, i.e., a narrow confined channel. In the first part of this thesis (Chapters 1-3), we experimentally study immiscible displacement flows of a viscoplastic fluid by a Newtonian fluid. In particular, we analyze the invasion of air into a Carbopol gel in a rectangular cross-section Hele-Shaw cell. This flow geometry is composed of two rigid parallel plates with a small gap. We study the results in terms of the displacement efficiency and morphology of the flow patterns. We demonstrate that the complex behaviors of the Carbopol gel, i.e., strong viscoplastic properties and weak viscoelastic properties, affect the displacement flow features. We then extend this study to the displacement of a Carbopol gel by silicon oil in order to consider the effects of wettability on the flow. We observe that a combination of viscoplastic behaviors and wettability exerts a significant impact on the displacement flow patterns, for which four different flow regimes are identified a capillary regime, a yield stress regime, a viscous regime and an elasto-inertial regime. Finally, we investigate the impacts of the cell cross-section aspect ratio on viscoplastic displacement flow features. In the second part of this thesis (Chapters 4-5), we numerically study miscible displacement flows of a viscoplastic fluid by a Newtonian fluid in a long 2D plane channel. For a heavy-light displacement, analyzing the displacement flow patterns as a function of various dimensionless parameters allows us to identify three distinct flow regimes center/slump-type, back/no-backflow and stable/unstable displacements. We describe the effects of the viscosity ratio of fluids, buoyancy, yield stress and channel inclination on the aforementioned flow regimes. === Displacement flows frequently occur in natural and industrial applications. Although Newtonian displacements have been considered in a wide range of theoretical and experimental studies in the recent decades, a considerable number of practical fluids exhibit viscoplastic features, making it hard to predict the flow behaviors. Viscoplastic displacement flows are generally controlled by a balance between a variety of forces, including viscous, buoyant, inertial, yield stress, etc., in addition to miscible and immiscible features. A competition between these forces may lead to exotic, unpredictable displacement flow behaviors. To provide a deep understanding of these flows, in this Ph.D. thesis we investigate the displacement flow of a viscoplastic fluid by a Newtonian fluid in a simple flow geometry, i.e., a narrow confined channel. In the first part of this thesis (Chapters 1-3), we experimentally study immiscible displacement flows of a viscoplastic fluid by a Newtonian fluid. In particular, we analyze the invasion of air into a Carbopol gel in a rectangular cross-section Hele-Shaw cell. This flow geometry is composed of two rigid parallel plates with a small gap. We study the results in terms of the displacement efficiency and morphology of the flow patterns. We demonstrate that the complex behaviors of the Carbopol gel, i.e., strong viscoplastic properties and weak viscoelastic properties, affect the displacement flow features. We then extend this study to the displacement of a Carbopol gel by silicon oil in order to consider the effects of wettability on the flow. We observe that a combination of viscoplastic behaviors and wettability exerts a significant impact on the displacement flow patterns, for which four different flow regimes are identified a capillary regime, a yield stress regime, a viscous regime and an elasto-inertial regime. Finally, we investigate the impacts of the cell cross-section aspect ratio on viscoplastic displacement flow features. In the second part of this thesis (Chapters 4-5), we numerically study miscible displacement flows of a viscoplastic fluid by a Newtonian fluid in a long 2D plane channel. For a heavy-light displacement, analyzing the displacement flow patterns as a function of various dimensionless parameters allows us to identify three distinct flow regimes center/slump-type, back/no-backflow and stable/unstable displacements. We describe the effects of the viscosity ratio of fluids, buoyancy, yield stress and channel inclination on the aforementioned flow regimes.
author2 Taghavi, Seyed Mohammad
author_facet Taghavi, Seyed Mohammad
Eslami, Ali
Eslami, Ali
author Eslami, Ali
Eslami, Ali
author_sort Eslami, Ali
title Viscoplastic displacement flows in narrow channels
title_short Viscoplastic displacement flows in narrow channels
title_full Viscoplastic displacement flows in narrow channels
title_fullStr Viscoplastic displacement flows in narrow channels
title_full_unstemmed Viscoplastic displacement flows in narrow channels
title_sort viscoplastic displacement flows in narrow channels
publisher Université Laval
publishDate 2019
url http://hdl.handle.net/20.500.11794/37153
http://hdl.handle.net/20.500.11794/37153
work_keys_str_mv AT eslamiali viscoplasticdisplacementflowsinnarrowchannels
AT eslamiali viscoplasticdisplacementflowsinnarrowchannels
_version_ 1719335152629317632
spelling ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-371532020-07-31T17:08:30Z Viscoplastic displacement flows in narrow channels Viscoplastic displacement flows in narrow channels Eslami, Ali Eslami, Ali Taghavi, Seyed Mohammad Taghavi, Seyed Mohammad TP 7.5 UL 2019 TP 7.5 UL 2019 Viscoplasticité Viscoplasticité Dynamique des fluides Dynamique des fluides Les écoulements à déplacement se produisent fréquemment dans les applications naturelles et industrielles. Bien que les déplacements Newtoniens aient été pris en considération dans une grande variété d’études théoriques et expérimentales dans les dernières décennies, un nombre considérable de fluides pratiques présentent des caractéristiques viscoplastiques, rendant la prévision du comportement des écoulements plus difficile. Les écoulement de déplacement viscoplastiques sont généralement contrôlés par un équilibre entre diverses forces, y compris la force visqueuse, la force de flottabilité, la force d’inertie, contrainte d’écoulement, etc., en plus de caractéristiques miscibles et non miscibles. Une compétition entre ces forces peut conduire à des comportements imprévisibles et exotiques de déplacement. Permettant une compréhension approfondie de ces écoulements, dans cette thèse de doctorat nous avons étudié l’écoulement à déplacement d’un fluide viscoplastique par un fluide Newtonien dans une géométrie simple, c.-à-d. un canal étroit et confiné. Dans la première partie de cette thèse (chapitres 1 à 3), nous étudions expérimentalement les écoulements à déplacement non-miscibles d’un fluide viscoplastique par un fluide Newtonien. En particulier, nous analysons le mouvement d’air dans un gel de Carbopol, dans une cellule de Hele-Shaw de section rectangulaire. Cette géométrie est composée de deux plaques parallèles rigides. Nous étudions les résultats en termes d’efficacité de déplacement et de morphologie des modèles d’écoulement. Nous démontrons que les comportements complexes du gel Carbopol, c.-à-d. les fortes propriétés viscoplastiques et les faibles propriétés viscoélastiques, affectent les caractéristiques d’écoulement de déplacement. Ensuite, nous étendons cette étude au déplacement d’un gel de Carbopol par une huile de silicone afin de considérer les effets de la mouillabilité sur l’écoulement. Nous observons qu’une combinaison de comportements viscoplastiques et de mouillabilité exerce un impact significatif sur les modèles d’écoulement à déplacement, pour lesquels quatre régimes d’écoulement différents sont identifiés : un régime capillaire, un régime de contrainte d’écoulement, un régime visqueux et un régime élastoinertiel. Enfin, nous étudions les impacts du rapport d’aspect de la section transversale de la cellule sur les caractéristiques de déplacement viscoplastique. Dans la deuxième partie de cette thèse (chapitres 4 à 5), nous étudions numériquement les écoulements à déplacement miscibles d’un fluide viscoplastique par un fluide Newtonien dans un long canal plan 2D. Pour un déplacement «heavy-light», l’analyse des modèles d’écoulement en fonction de divers paramètres sans dimension nous permet d’identifier trois régimes d’écoulement distincts : déplacements «center-type»/«slump- type», «back flow»/«no-back flow» et déplacement «stable/instable». Nous décrivons les effets du rapport de viscosité des fluides, de la flottabilité, de la contrainte d’écoulement et de l’inclinaison du canal sur les régimes d’écoulement susmentionnés. Les écoulements à déplacement se produisent fréquemment dans les applications naturelles et industrielles. Bien que les déplacements Newtoniens aient été pris en considération dans une grande variété d’études théoriques et expérimentales dans les dernières décennies, un nombre considérable de fluides pratiques présentent des caractéristiques viscoplastiques, rendant la prévision du comportement des écoulements plus difficile. Les écoulement de déplacement viscoplastiques sont généralement contrôlés par un équilibre entre diverses forces, y compris la force visqueuse, la force de flottabilité, la force d’inertie, contrainte d’écoulement, etc., en plus de caractéristiques miscibles et non miscibles. Une compétition entre ces forces peut conduire à des comportements imprévisibles et exotiques de déplacement. Permettant une compréhension approfondie de ces écoulements, dans cette thèse de doctorat nous avons étudié l’écoulement à déplacement d’un fluide viscoplastique par un fluide Newtonien dans une géométrie simple, c.-à-d. un canal étroit et confiné. Dans la première partie de cette thèse (chapitres 1 à 3), nous étudions expérimentalement les écoulements à déplacement non-miscibles d’un fluide viscoplastique par un fluide Newtonien. En particulier, nous analysons le mouvement d’air dans un gel de Carbopol, dans une cellule de Hele-Shaw de section rectangulaire. Cette géométrie est composée de deux plaques parallèles rigides. Nous étudions les résultats en termes d’efficacité de déplacement et de morphologie des modèles d’écoulement. Nous démontrons que les comportements complexes du gel Carbopol, c.-à-d. les fortes propriétés viscoplastiques et les faibles propriétés viscoélastiques, affectent les caractéristiques d’écoulement de déplacement. Ensuite, nous étendons cette étude au déplacement d’un gel de Carbopol par une huile de silicone afin de considérer les effets de la mouillabilité sur l’écoulement. Nous observons qu’une combinaison de comportements viscoplastiques et de mouillabilité exerce un impact significatif sur les modèles d’écoulement à déplacement, pour lesquels quatre régimes d’écoulement différents sont identifiés : un régime capillaire, un régime de contrainte d’écoulement, un régime visqueux et un régime élastoinertiel. Enfin, nous étudions les impacts du rapport d’aspect de la section transversale de la cellule sur les caractéristiques de déplacement viscoplastique. Dans la deuxième partie de cette thèse (chapitres 4 à 5), nous étudions numériquement les écoulements à déplacement miscibles d’un fluide viscoplastique par un fluide Newtonien dans un long canal plan 2D. Pour un déplacement «heavy-light», l’analyse des modèles d’écoulement en fonction de divers paramètres sans dimension nous permet d’identifier trois régimes d’écoulement distincts : déplacements «center-type»/«slump- type», «back flow»/«no-back flow» et déplacement «stable/instable». Nous décrivons les effets du rapport de viscosité des fluides, de la flottabilité, de la contrainte d’écoulement et de l’inclinaison du canal sur les régimes d’écoulement susmentionnés. Displacement flows frequently occur in natural and industrial applications. Although Newtonian displacements have been considered in a wide range of theoretical and experimental studies in the recent decades, a considerable number of practical fluids exhibit viscoplastic features, making it hard to predict the flow behaviors. Viscoplastic displacement flows are generally controlled by a balance between a variety of forces, including viscous, buoyant, inertial, yield stress, etc., in addition to miscible and immiscible features. A competition between these forces may lead to exotic, unpredictable displacement flow behaviors. To provide a deep understanding of these flows, in this Ph.D. thesis we investigate the displacement flow of a viscoplastic fluid by a Newtonian fluid in a simple flow geometry, i.e., a narrow confined channel. In the first part of this thesis (Chapters 1-3), we experimentally study immiscible displacement flows of a viscoplastic fluid by a Newtonian fluid. In particular, we analyze the invasion of air into a Carbopol gel in a rectangular cross-section Hele-Shaw cell. This flow geometry is composed of two rigid parallel plates with a small gap. We study the results in terms of the displacement efficiency and morphology of the flow patterns. We demonstrate that the complex behaviors of the Carbopol gel, i.e., strong viscoplastic properties and weak viscoelastic properties, affect the displacement flow features. We then extend this study to the displacement of a Carbopol gel by silicon oil in order to consider the effects of wettability on the flow. We observe that a combination of viscoplastic behaviors and wettability exerts a significant impact on the displacement flow patterns, for which four different flow regimes are identified a capillary regime, a yield stress regime, a viscous regime and an elasto-inertial regime. Finally, we investigate the impacts of the cell cross-section aspect ratio on viscoplastic displacement flow features. In the second part of this thesis (Chapters 4-5), we numerically study miscible displacement flows of a viscoplastic fluid by a Newtonian fluid in a long 2D plane channel. For a heavy-light displacement, analyzing the displacement flow patterns as a function of various dimensionless parameters allows us to identify three distinct flow regimes center/slump-type, back/no-backflow and stable/unstable displacements. We describe the effects of the viscosity ratio of fluids, buoyancy, yield stress and channel inclination on the aforementioned flow regimes. Displacement flows frequently occur in natural and industrial applications. Although Newtonian displacements have been considered in a wide range of theoretical and experimental studies in the recent decades, a considerable number of practical fluids exhibit viscoplastic features, making it hard to predict the flow behaviors. Viscoplastic displacement flows are generally controlled by a balance between a variety of forces, including viscous, buoyant, inertial, yield stress, etc., in addition to miscible and immiscible features. A competition between these forces may lead to exotic, unpredictable displacement flow behaviors. To provide a deep understanding of these flows, in this Ph.D. thesis we investigate the displacement flow of a viscoplastic fluid by a Newtonian fluid in a simple flow geometry, i.e., a narrow confined channel. In the first part of this thesis (Chapters 1-3), we experimentally study immiscible displacement flows of a viscoplastic fluid by a Newtonian fluid. In particular, we analyze the invasion of air into a Carbopol gel in a rectangular cross-section Hele-Shaw cell. This flow geometry is composed of two rigid parallel plates with a small gap. We study the results in terms of the displacement efficiency and morphology of the flow patterns. We demonstrate that the complex behaviors of the Carbopol gel, i.e., strong viscoplastic properties and weak viscoelastic properties, affect the displacement flow features. We then extend this study to the displacement of a Carbopol gel by silicon oil in order to consider the effects of wettability on the flow. We observe that a combination of viscoplastic behaviors and wettability exerts a significant impact on the displacement flow patterns, for which four different flow regimes are identified a capillary regime, a yield stress regime, a viscous regime and an elasto-inertial regime. Finally, we investigate the impacts of the cell cross-section aspect ratio on viscoplastic displacement flow features. In the second part of this thesis (Chapters 4-5), we numerically study miscible displacement flows of a viscoplastic fluid by a Newtonian fluid in a long 2D plane channel. For a heavy-light displacement, analyzing the displacement flow patterns as a function of various dimensionless parameters allows us to identify three distinct flow regimes center/slump-type, back/no-backflow and stable/unstable displacements. We describe the effects of the viscosity ratio of fluids, buoyancy, yield stress and channel inclination on the aforementioned flow regimes. 2019 info:eu-repo/semantics/openAccess https://corpus.ulaval.ca/jspui/conditions.jsp info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/20.500.11794/37153 http://hdl.handle.net/20.500.11794/37153 eng eng 1 ressource en ligne (xxvii, 204 pages) 1 ressource en ligne (xxvii, 204 pages) application/pdf Université Laval Université Laval