Optimization of polypropylene cellular films for piezoelectric applications
Cette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie d...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English English |
Published: |
Université Laval
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/20.500.11794/27391 http://hdl.handle.net/20.500.11794/27391 |
id |
ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-27391 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
TP 7.5 UL 2016 TP 7.5 UL 2016 Polypropylène Polypropylène Dispositifs piézoélectriques Dispositifs piézoélectriques Pellicules plastiques Pellicules plastiques |
spellingShingle |
TP 7.5 UL 2016 TP 7.5 UL 2016 Polypropylène Polypropylène Dispositifs piézoélectriques Dispositifs piézoélectriques Pellicules plastiques Pellicules plastiques Mohebbi, Abolfazl Mohebbi, Abolfazl Optimization of polypropylene cellular films for piezoelectric applications |
description |
Cette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie de ce travail, une production en continu par extrusion-calandrage a été développée pour produire des films de PP moussés pour des applications piézoélectriques. Le système est basé sur un moussage physique en utilisant de l'azote supercritique (SC-N2) et le carbonate de calcium (CaCO3) comme agent de nucléation. Les paramètres de mise en œuvre (conception de vis, profil de température, agent gonflant et de nucléation ainsi que leur contenu, et la vitesse d'étirement) ont été optimisés pour obtenir une forme spécifique (oculaire) comme structure cellulaire avec une distribution uniforme de la taille des cellules. Les résultats ont montré qu'une structure cellulaire avec un plus grand rapport d'aspect (AR) des cellules possède un plus faible module de Young, ce qui est approprié pour les films cellulaires piézoélectriques. Dans la deuxième partie, des films PP ferroélectrets ont été produits. Suite à l'optimisation du procédé de décharge corona (tension de charge, distance de l'aiguille, temps de charge), les propriétés piézoélectriques des films obtenus ont été caractérisées et le coefficient piézoélectrique quasi-statique d33 a produit une valeur de 550 pC/N. Afin de mieux caractériser le comportement du film, l’analyse mécanique dynamique (DMA) a été proposée comme une méthode simple pour relier les propriétés piézoélectriques des films PP cellulaires à leur morphologie (taille, géométrie et densité des cellules). Finalement, grâce à un post-traitement basé sur la saturation du film PP moussé avec le SC-N2, une procédure en température et pression a été développée afin d’améliorer la structure cellulaire (cellules plus allongées). Ce traitement a permis d’augmenter de 45% le coefficient d33 (800 pC/N). === Cette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie de ce travail, une production en continu par extrusion-calandrage a été développée pour produire des films de PP moussés pour des applications piézoélectriques. Le système est basé sur un moussage physique en utilisant de l'azote supercritique (SC-N2) et le carbonate de calcium (CaCO3) comme agent de nucléation. Les paramètres de mise en œuvre (conception de vis, profil de température, agent gonflant et de nucléation ainsi que leur contenu, et la vitesse d'étirement) ont été optimisés pour obtenir une forme spécifique (oculaire) comme structure cellulaire avec une distribution uniforme de la taille des cellules. Les résultats ont montré qu'une structure cellulaire avec un plus grand rapport d'aspect (AR) des cellules possède un plus faible module de Young, ce qui est approprié pour les films cellulaires piézoélectriques. Dans la deuxième partie, des films PP ferroélectrets ont été produits. Suite à l'optimisation du procédé de décharge corona (tension de charge, distance de l'aiguille, temps de charge), les propriétés piézoélectriques des films obtenus ont été caractérisées et le coefficient piézoélectrique quasi-statique d33 a produit une valeur de 550 pC/N. Afin de mieux caractériser le comportement du film, l’analyse mécanique dynamique (DMA) a été proposée comme une méthode simple pour relier les propriétés piézoélectriques des films PP cellulaires à leur morphologie (taille, géométrie et densité des cellules). Finalement, grâce à un post-traitement basé sur la saturation du film PP moussé avec le SC-N2, une procédure en température et pression a été développée afin d’améliorer la structure cellulaire (cellules plus allongées). Ce traitement a permis d’augmenter de 45% le coefficient d33 (800 pC/N). === This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N). === This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N). |
author2 |
Rodrigue, Denis |
author_facet |
Rodrigue, Denis Mohebbi, Abolfazl Mohebbi, Abolfazl |
author |
Mohebbi, Abolfazl Mohebbi, Abolfazl |
author_sort |
Mohebbi, Abolfazl |
title |
Optimization of polypropylene cellular films for piezoelectric applications |
title_short |
Optimization of polypropylene cellular films for piezoelectric applications |
title_full |
Optimization of polypropylene cellular films for piezoelectric applications |
title_fullStr |
Optimization of polypropylene cellular films for piezoelectric applications |
title_full_unstemmed |
Optimization of polypropylene cellular films for piezoelectric applications |
title_sort |
optimization of polypropylene cellular films for piezoelectric applications |
publisher |
Université Laval |
publishDate |
2016 |
url |
http://hdl.handle.net/20.500.11794/27391 http://hdl.handle.net/20.500.11794/27391 |
work_keys_str_mv |
AT mohebbiabolfazl optimizationofpolypropylenecellularfilmsforpiezoelectricapplications AT mohebbiabolfazl optimizationofpolypropylenecellularfilmsforpiezoelectricapplications |
_version_ |
1719334101732818944 |
spelling |
ndltd-LAVAL-oai-corpus.ulaval.ca-20.500.11794-273912020-07-31T17:07:01Z Optimization of polypropylene cellular films for piezoelectric applications Optimization of polypropylene cellular films for piezoelectric applications Mohebbi, Abolfazl Mohebbi, Abolfazl Rodrigue, Denis Rodrigue, Denis Ajji, Abdellah Ajji, Abdellah Mighri, Frej Mighri, Frej TP 7.5 UL 2016 TP 7.5 UL 2016 Polypropylène Polypropylène Dispositifs piézoélectriques Dispositifs piézoélectriques Pellicules plastiques Pellicules plastiques Cette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie de ce travail, une production en continu par extrusion-calandrage a été développée pour produire des films de PP moussés pour des applications piézoélectriques. Le système est basé sur un moussage physique en utilisant de l'azote supercritique (SC-N2) et le carbonate de calcium (CaCO3) comme agent de nucléation. Les paramètres de mise en œuvre (conception de vis, profil de température, agent gonflant et de nucléation ainsi que leur contenu, et la vitesse d'étirement) ont été optimisés pour obtenir une forme spécifique (oculaire) comme structure cellulaire avec une distribution uniforme de la taille des cellules. Les résultats ont montré qu'une structure cellulaire avec un plus grand rapport d'aspect (AR) des cellules possède un plus faible module de Young, ce qui est approprié pour les films cellulaires piézoélectriques. Dans la deuxième partie, des films PP ferroélectrets ont été produits. Suite à l'optimisation du procédé de décharge corona (tension de charge, distance de l'aiguille, temps de charge), les propriétés piézoélectriques des films obtenus ont été caractérisées et le coefficient piézoélectrique quasi-statique d33 a produit une valeur de 550 pC/N. Afin de mieux caractériser le comportement du film, l’analyse mécanique dynamique (DMA) a été proposée comme une méthode simple pour relier les propriétés piézoélectriques des films PP cellulaires à leur morphologie (taille, géométrie et densité des cellules). Finalement, grâce à un post-traitement basé sur la saturation du film PP moussé avec le SC-N2, une procédure en température et pression a été développée afin d’améliorer la structure cellulaire (cellules plus allongées). Ce traitement a permis d’augmenter de 45% le coefficient d33 (800 pC/N). Cette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie de ce travail, une production en continu par extrusion-calandrage a été développée pour produire des films de PP moussés pour des applications piézoélectriques. Le système est basé sur un moussage physique en utilisant de l'azote supercritique (SC-N2) et le carbonate de calcium (CaCO3) comme agent de nucléation. Les paramètres de mise en œuvre (conception de vis, profil de température, agent gonflant et de nucléation ainsi que leur contenu, et la vitesse d'étirement) ont été optimisés pour obtenir une forme spécifique (oculaire) comme structure cellulaire avec une distribution uniforme de la taille des cellules. Les résultats ont montré qu'une structure cellulaire avec un plus grand rapport d'aspect (AR) des cellules possède un plus faible module de Young, ce qui est approprié pour les films cellulaires piézoélectriques. Dans la deuxième partie, des films PP ferroélectrets ont été produits. Suite à l'optimisation du procédé de décharge corona (tension de charge, distance de l'aiguille, temps de charge), les propriétés piézoélectriques des films obtenus ont été caractérisées et le coefficient piézoélectrique quasi-statique d33 a produit une valeur de 550 pC/N. Afin de mieux caractériser le comportement du film, l’analyse mécanique dynamique (DMA) a été proposée comme une méthode simple pour relier les propriétés piézoélectriques des films PP cellulaires à leur morphologie (taille, géométrie et densité des cellules). Finalement, grâce à un post-traitement basé sur la saturation du film PP moussé avec le SC-N2, une procédure en température et pression a été développée afin d’améliorer la structure cellulaire (cellules plus allongées). Ce traitement a permis d’augmenter de 45% le coefficient d33 (800 pC/N). This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N). This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N). 2016 info:eu-repo/semantics/openAccess https://corpus.ulaval.ca/jspui/conditions.jsp info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/20.500.11794/27391 http://hdl.handle.net/20.500.11794/27391 eng eng 1 ressource en ligne (xxvii, 198 pages) 1 ressource en ligne (xxvii, 198 pages) application/pdf Université Laval Université Laval |