Ablation laser et croissance de réseaux de surface

Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 === La formation des réseaux de surface, ou laser-induced periodic surface structures (LIPSSs), à l’aide d’une source laser pulsée est étudiée avec la théorie de Sipe-Drude, d’abord analytiquement, puis avec la mét...

Full description

Bibliographic Details
Main Author: Déziel, Jean-Luc
Other Authors: Dubé, Louis J.
Format: Dissertation
Language:French
Published: Université Laval 2015
Subjects:
Online Access:http://hdl.handle.net/20.500.11794/26377
Description
Summary:Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 === La formation des réseaux de surface, ou laser-induced periodic surface structures (LIPSSs), à l’aide d’une source laser pulsée est étudiée avec la théorie de Sipe-Drude, d’abord analytiquement, puis avec la méthode numérique finite-difference time-domain (FDTD). Les LIPSSs sont des structures nanométriques sinusoïdales pouvant être catégorisées selon leur orientation par rapport à la direction de polarisation du laser incident et en fonction de leur période Λ par rapport à la longueur d’onde du laser λ. Avec la méthode FDTD, nous trouvons, dans une région de l’espace paramétrique jamais explorée, qu’une impulsion laser polarisée linéairement peut interagir avec une surface rugueuse de façon à faire croître des structures bidimensionnelles ayant une période de Λ ∼ λ dans les orientations parallèle et orthogonale à la direction de polarisation. Par contre, ce modèle ne peut expliquer la forte organisation et régularité des structures dans le domaine spatial, tel qu’observé dans les expériences. Permettre l’auto-organisation des structures avec un mécanisme de rétroaction inter-impulsion est une solution possible afin de simuler la croissance de LIPSSs fortement organisés d’une impulsion laser à la suivante. Récemment proposée, cette méthode utilise un processus d’ablation non physique afin de tenir compte qualitativement de l’éjection de matériau entre deux impulsions laser. Ce nouveau modèle peut reproduire une grande variété de LIPSSs avec une forte régularité spatiale, mais échoue toujours à simuler la croissance de l’amplitude de certains types de structures. Nous suggérons que ces structures restantes peuvent croître en considérant un mécanisme inverse, l’expansion. En combinant ablation et expansion, nous avons simulé avec succès un plus grand nombre de types de LIPSSs. === The formation of laser-induced periodic surface structures (LIPSSs) using pulsed laser source is studied on the basis of the Sipe-Drude theory solved, first analytically, then with a finitedifference time-domain (FDTD) scheme. LIPSSs consist of wavy nanometric structures and can be categorized depending on their orientation with respect to the incident laser polarization and their periodicity Λ with respect to the incident laser wavelength λ. With our FDTD solver, we find, in as yet unexplored regions of parameter space, that a linearly polarized laser pulse can interact with a rough surface such that bidimensional structures could grow with both parallel and perpendicular periodicity of Λ ∼ λ. However, this theory cannot predict the strong organization and regularity in the space domain, as observed in the experiments. Allowing self-organization in the model with an interpulse feedback mechanism is a possible solution to simulate the growth of strongly organized LIPSSs from one laser pulse to the next. This recently proposed method uses a non-physical ablation process to qualitatively account for material removal between two laser pulses. This new model can reproduce a large variety of LIPSSs with a strong spatial regularity, but still fails to simulate amplitude growth of some of the structures. We suggest that those remaining structures can grow by considering an inverse mechanism, an expansion process. By combining ablation and expansion mechanisms, we have successfully simulated the growth of a large class of LIPSSs.