Summary: | Les modifications post-traductionnelles (PTM) sont des modifications chimiques des protéines qui permettent à la cellule de réguler finement ses fonctions ainsi que de coder et d’intégrer des signaux environnementaux. Les progrès récents en ce qui a trait aux techniques expérimentales et bioinformatiques nous ont permis de determiner les profils de PTM pour des protéomes entiers ainsi que d’identifier les molécules qui sont responsables d’ « écrire » ou d’« effacer » ces PTM. Avec ces donnés, il a été possible de commencer à definir des réseaux de régulation cellulaire par PTM. Ici, nous avons étudié l’évolution de ces réseaux pour mieux comprendre comment ils peuvent contribuer à expliquer la complexité et la diversité des organismes ainsi que pour mieux comprendre leurs mecanismes d’action. Avant tout, nous avons abordé la question de comment les réseaux de régulation des PTM peuvent être recablés après un évenement de duplication des gènes en étudiant comment le réseau de phosphorégulation de la levure bourgeonnante a été récablé après un évenement de duplication complète du génome qui a eu lieu il y a 100 milions d’années. Nos résultats mettent en évidence le rôle de la duplication des gènes comme mécanisme clé pour l’innovation et la complexification des réseaux de régulation par PTM. Par la suite, nous avons abordé la question de comment les PTM peuvent contribuer à la diversité des organismes en comparant les profils de phosphorylation de l’homme et de la souris. Nous avons trouvé des différences substantielles dans les profils de PTM de ces deux espèces qui ont le potentiel d’expliquer, au moins en partie, les différences phénotypiques observées entre eux. Nous avons aussi trouvé des évidences qui supportent l’idée que les PTM peuvent « sauter » vers des nouvelles localisations et quand même réguler les mêmes fonctions biologiques. Ce phénomène doit être pris en considération dans les comparaisons des profils de PTM qui appartiennent à des espèces différentes, pour éviter de surestimer la divergence causée par la régulation par les PTM. Enfin, nous avons investigué comment plusieures PTM alternatives pour un même residu pouvent interagir pour réguler des fonctions cellulaires. Nous avons examiné deux des PTM les plus connus, la phosphorylation et la O-GlcNAcylation, qui modifient les sérines et les thréonines, et nous avons étudié les mécanismes potentiels d’interaction entre ces deux PTM. Nos résultats supportent l’hypothèse que ces deux PTM contrôlent plusieurs fonctions biologiques plutôt qu’une seule fonction. Globalement, les résultats présentés dans cette thèse permettent d’élucider les dynamiques évolutives, les mécanismes de fonctionnement et les implications biologiques des PTM. === Post-translational modifications (PTMs) are chemical modification of proteins that allow the cell to finely tune its functions as well as to encode and integrate environmental signals. The recent advancements in the experimental and bioinformatic techniques have allowed us to determine the PTM profiles of entire proteomes as well as to identify the molecules that write or erase PTMs to/from each protein. This data have made possible to define cellular PTM regulatory networks. Here, we study the evolution of these networks to get new insights about how they may contribute to increase organismal complexity and diversity and to better understand their molecular mechanisms of functioning. We first address the question of how and to which extent a PTM network can be rewired after a gene duplication event, by studying how the budding yeast phosphoregulatory network was rewired after a whole genome duplication event that occurred 100 million years ago. Our results highlight the role of gene duplication as a key mechanism to innovate and complexify PTM regulatory networks. Then, we address the question of how PTM networks may contribute to organismal diversity by comparing the human and mouse phosphorylation profiles. We find that there are substantial differences in the PTM profiles of these two species that have the potential to explain, at least in part, the phenotypic differences observed between them. Moreover, we find evidence supporting the idea that PTMs can jump to new positions during evolution and still regulate the same biological functions. This phenomenon should be taken into account when comparing the PTM profiles of different species, in order to avoid overestimating the divergence in PTM regulation. Finally, we investigate how multiple and alternative PTMs that affect the same residues interact with each other to control proteins functions. We focus on two of the most studied PTMs, protein phosphorylation and O-GlcNAcylation, that affect serine and threonine residues and we study their potential mechanisms of interactions in human and mouse. Our results support the hypothesis that these two PTMs control multiple biological functions rather than a single one. Globally this work provides new findings that elucidate the evolutionary dynamics, the functional mechanisms and the biological implications of PTMs.
|