Processus de Markov étiquetés et Systèmes Hybrides probabilistes

Dans ce mémoire, nous comparons deux modèles de processus probabilistes évoluant dans un environnement continu. Les processus de Markov étiquetés sont des systèmes de transitions pour lesquels l’ensemble des états est non-dénombrable, mais qui évoluent de manière discrè...

Full description

Bibliographic Details
Main Author: Assouramou, Joseph
Other Authors: Desharnais, Josée
Format: Others
Language:FR
Published: Université Laval 2012
Subjects:
Online Access:http://www.theses.ulaval.ca/2012/28726/28726.pdf
Description
Summary:Dans ce mémoire, nous comparons deux modèles de processus probabilistes évoluant dans un environnement continu. Les processus de Markov étiquetés sont des systèmes de transitions pour lesquels l’ensemble des états est non-dénombrable, mais qui évoluent de manière discrète dans le temps. Les mesures de probabilité définies sur l’ensemble des états peuvent avoir un support infini. Les processus hybrides sont une combinaison d’un processus à espace d’états continu qui évolue de manière continue dans le temps et une composante discrète qui intervient pour contrôler l’évolution. Les extensions probabilistes des processus hybrides présentes dans la littérature restreignent le comportement probabiliste à la composante discrète. Nous utilisons deux exemples de systèmes, un avion et un bateau, pour faire ressortir les divergences entre les deux modèles ainsi que leurs limitations, et nous définissons une généralisation qui peut modéliser fidèlement ces exemples. Nous avons également pu montrer, dans un article publié dans un atelier international, comment utiliser, dans le contexte probabiliste, la «substitution d’horloge» et l’«approximation par portrait» qui sont des techniques proposées par Henzinger et al. pour les processus non probabilistes. Ces techniques permettent, sous certaines conditions, de définir un processus probabiliste rectangulaire à partir d’un qui est non rectangulaire, rendant ainsi possible la vérification formelle de toute classe de système hybride probabiliste. === We compare two models of processes involving uncountable space. Labelled Markov processes are probabilistic transition systems that can have uncountably many states, but still make discrete time steps. The probability measures on the state space may have uncountable support and a tool has been developed for verification of such systems. Hybrid processes are a combination of a continuous space process that evolves continuously with time and of a discrete component, such as a controller. Existing extensions of Hybrid processes with probability restrict the probabilistic behavior to the discrete component. We have also shown, in a paper, how to compute for probabilistic hybrid systems, the clock approximation and linear phase-portrait approximation that have been proposed for non probabilistic processes by Henzinger et al. The techniques permit, under some conditions, to define a rectangular probabilistic process from a non rectangular one, hence allowing the model-checking of any class of systems. To highlight the differences between Labelled Markov processes and probabilistic hybrid systems, we use two examples, the ones of a boat and an aircraft, and