Summary: | Ce mémoire traite de la commande du convertisseur en source de tension à MLI triphasé connecté au réseau. La structure de commande est basée sur une boucle interne et une boucle externe. La boucle interne commande le transfert de la puissance entre le lien du bus continu et le réseau. La boucle externe fournit le courant de référence à la boucle interne et est conçue pour maintenir la tension du bus continu constante.
Avec la commande vectorielle, il est possible de fournir des courants quasi-sinusoïdaux au réseau avec un facteur de puissance unitaire. Les tensions et les courants sont transformés dans un système de référence en rotation d-q, où la commande devient beaucoup plus aisée. Puisque le vecteur spatial de courant dans le système de coordonnées synchrone d-q est fixe, les contrôleurs PI opèrent sur des signaux continus, plutôt que sur des signaux sinusoïdaux. En régime permanent, les vecteurs de courant c.a. apparaissent comme des constantes dans le système de référence synchrone donc, les erreurs statiques peuvent être annulées par l'utilisation de contrôleurs PI conventionnels.
L'inconvénient des structures classiques de contrôle est la difficulté de commander des variables avec des références sinusoïdales en raison des capacités limitées des contrôleurs PI à suivre exactement des entrées variables dans le temps.
Ce mémoire propose une stratégie de commande plus simple, mais d'autre part équivalente, qui résout ce problème sans la difficulté de transformer des quantités triphasées dépendantes du temps dans le système de référence d-q invariant dans le temps et vice versa. Cette nouvelle structure de commande est basée sur un contrôleur complexe (c'est-à-dire avec parties réelles et imaginaires) qui réalise une erreur nulle en régime permanent en commandant le vecteur spatial de courant directement dans le système de référence stationnaire d-q.
L'équivalence mathématique avec la commande vectorielle est entièrement démontrée. Il s'avère que les gains du nouveau régulateur complexe sont exactement identiques à ceux du contrôleur PI conventionnel. On présente des résultats de simulation qui montrent clairement l'équivalence des deux systèmes de commande. Des résultats expérimentaux en régime permanent et en régime transitoire sont également présentés.
|