Développement d'un système d'identification des dialogues problématiques dans le système de dialogue personne-machine

Dans ce memoire, nous proposons un outil de classification automatique de dialogues problematiques dans un contexte d'un systeme de dialogue personne-machine. Le domaine d'application de cet outil est celui du forage de dormees (data mining), un sous domaine du domaine de I'apprent...

Full description

Bibliographic Details
Main Author: Truong, Le Hoang
Format: Others
Published: École de technologie supérieure 2008
Online Access:http://espace.etsmtl.ca/117/1/TRUONG_Le_Hoang.pdf
http://espace.etsmtl.ca/117/4/TRUONG_Le_Hoang%2Dweb.pdf
Description
Summary:Dans ce memoire, nous proposons un outil de classification automatique de dialogues problematiques dans un contexte d'un systeme de dialogue personne-machine. Le domaine d'application de cet outil est celui du forage de dormees (data mining), un sous domaine du domaine de I'apprentissage machine (machine learning). L'architecture de cet outil est modulaire et extensible afin de faciliter 1'experimentation de differents paradigmes de classification. L'outil utilise plusieurs schemes d'apprentissage machine tels que I'arbre de decision C4.5 et I'arbre de modelisation logistique pour la classification de dialogue et les parametres utilises provierment de la plateforme PARADISE. De plus, nous etudions I'ajout de deux nouveaux parametres : mots negatives de reconnaissance et repetitions de mots. L'outil est teste selon la technique de validation croisee avec 10 validations croisees sur deux corpus publiquement distribues par le Linguistic Data Consortium (DARPA Communicator 2000 et DARPA Communicator 2001). Les resultats obtenus compares a ceux-la de I'etat de Part montrent que notre PDl est plus performant et que les deux nouveaux parametres ameliorent la performance globale de l'outil.