Approche combinatoire du permutoèdre et de l'associaèdre
Dans ce mémoire nous allons définir l'associaèdre et voir différentes manières de construire ses réalisations. Nous allons premièrement voir la réalisation donnée par Jean-Louis Loday via les arbres binaires. Nous introduirons les permutoèdres généralisés ainsi que les associaèdres généralisés...
Main Author: | |
---|---|
Format: | Others |
Published: |
2011
|
Subjects: | |
Online Access: | http://www.archipel.uqam.ca/4212/1/M12051.pdf |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMUQ.4212 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMUQ.42122013-10-04T04:04:42Z Approche combinatoire du permutoèdre et de l'associaèdre Lortie, Jonathan Associaèdre Nombres de Catalan Permutoèdre Polytope abstrait Dans ce mémoire nous allons définir l'associaèdre et voir différentes manières de construire ses réalisations. Nous allons premièrement voir la réalisation donnée par Jean-Louis Loday via les arbres binaires. Nous introduirons les permutoèdres généralisés ainsi que les associaèdres généralisés de type A et B. Ensuite, nous donnerons des réalisations généralisant celle de Loday via les orientations de graphe de Coxeter et les triangulations de polygones réguliers. Finalement, nous démontrerons une conjecture faite par Chapoton concernant le barycentre de l'associaèdre. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Associaèdre, permutoèdre, polytope abstrait, combinatoire de Catalan. 2011-04 Mémoire accepté NonPeerReviewed application/pdf http://www.archipel.uqam.ca/4212/1/M12051.pdf Lortie, Jonathan (2011). « Approche combinatoire du permutoèdre et de l'associaèdre » Mémoire. Montréal (Québec, Canada), Université du Québec à Montréal, Maîtrise en mathématiques. http://www.archipel.uqam.ca/4212/ |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Associaèdre Nombres de Catalan Permutoèdre Polytope abstrait |
spellingShingle |
Associaèdre Nombres de Catalan Permutoèdre Polytope abstrait Lortie, Jonathan Approche combinatoire du permutoèdre et de l'associaèdre |
description |
Dans ce mémoire nous allons définir l'associaèdre et voir différentes manières de construire ses réalisations. Nous allons premièrement voir la réalisation donnée par Jean-Louis Loday via les arbres binaires. Nous introduirons les permutoèdres généralisés ainsi que les associaèdres généralisés de type A et B. Ensuite, nous donnerons des réalisations généralisant celle de Loday via les orientations de graphe de Coxeter et les triangulations de polygones réguliers. Finalement, nous démontrerons une conjecture faite par Chapoton concernant le barycentre de l'associaèdre.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Associaèdre, permutoèdre, polytope abstrait, combinatoire de Catalan.
|
author |
Lortie, Jonathan |
author_facet |
Lortie, Jonathan |
author_sort |
Lortie, Jonathan |
title |
Approche combinatoire du permutoèdre et de l'associaèdre |
title_short |
Approche combinatoire du permutoèdre et de l'associaèdre |
title_full |
Approche combinatoire du permutoèdre et de l'associaèdre |
title_fullStr |
Approche combinatoire du permutoèdre et de l'associaèdre |
title_full_unstemmed |
Approche combinatoire du permutoèdre et de l'associaèdre |
title_sort |
approche combinatoire du permutoèdre et de l'associaèdre |
publishDate |
2011 |
url |
http://www.archipel.uqam.ca/4212/1/M12051.pdf |
work_keys_str_mv |
AT lortiejonathan approchecombinatoiredupermutoedreetdelassociaedre |
_version_ |
1716598974948835328 |