Variétés de drapeaux et opérateurs différentiels
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1866/3467 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMU.1866-3467 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMU.1866-34672013-10-04T04:15:51ZVariétés de drapeaux et opérateurs différentielsJauffret, ColinFaisceau des opérateurs différentielsSheaf of differential operatorsVariété de drapeauxFlag varietyFibré cotangentCotangent bundleAlgèbre des opérateurs différentielsAlgebra of differential operatorsAlgèbre de WeylWeyl algebraGroupe algébriqueAlgebraic groupCohomologie des faisceauxSheaf cohomologyThéorie de la représentationRepresentation theoryMathematics / Mathématiques (UMI : 0405)Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété.Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.Broer, Abraham2010-02-18T17:41:24ZNO_RESTRICTION2010-02-18T17:41:24Z2010-01-072009-11Thèse ou Mémoire numérique / Electronic Thesis or Dissertationhttp://hdl.handle.net/1866/3467fr |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Faisceau des opérateurs différentiels Sheaf of differential operators Variété de drapeaux Flag variety Fibré cotangent Cotangent bundle Algèbre des opérateurs différentiels Algebra of differential operators Algèbre de Weyl Weyl algebra Groupe algébrique Algebraic group Cohomologie des faisceaux Sheaf cohomology Théorie de la représentation Representation theory Mathematics / Mathématiques (UMI : 0405) |
spellingShingle |
Faisceau des opérateurs différentiels Sheaf of differential operators Variété de drapeaux Flag variety Fibré cotangent Cotangent bundle Algèbre des opérateurs différentiels Algebra of differential operators Algèbre de Weyl Weyl algebra Groupe algébrique Algebraic group Cohomologie des faisceaux Sheaf cohomology Théorie de la représentation Representation theory Mathematics / Mathématiques (UMI : 0405) Jauffret, Colin Variétés de drapeaux et opérateurs différentiels |
description |
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. === Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety. |
author2 |
Broer, Abraham |
author_facet |
Broer, Abraham Jauffret, Colin |
author |
Jauffret, Colin |
author_sort |
Jauffret, Colin |
title |
Variétés de drapeaux et opérateurs différentiels |
title_short |
Variétés de drapeaux et opérateurs différentiels |
title_full |
Variétés de drapeaux et opérateurs différentiels |
title_fullStr |
Variétés de drapeaux et opérateurs différentiels |
title_full_unstemmed |
Variétés de drapeaux et opérateurs différentiels |
title_sort |
variétés de drapeaux et opérateurs différentiels |
publishDate |
2010 |
url |
http://hdl.handle.net/1866/3467 |
work_keys_str_mv |
AT jauffretcolin varietesdedrapeauxetoperateursdifferentiels |
_version_ |
1716602139343585280 |