Summary: | Un modèle pharmacocinétique à base physiologique (PBPK) d’exposition par inhalation à l’éthanol a antérieurement été développé en se basant sur des données provenant d’une étude chez des volontaires exposés par inhalation à plus de 5000 ppm. Cependant, une incertitude persiste sur la capacité du modèle PBPK à prédire les niveaux d’éthanolémie pour des expositions à de faibles concentrations. Ces niveaux sont fréquemment rencontrés par une large partie de la population et des travailleurs suite à l’utilisation de produits tels que les vernis et les solutions hydroalcooliques (SHA). Il est ainsi nécessaire de vérifier la validité du modèle existant et de déterminer l’exposition interne à l’éthanol dans de telles conditions. Les objectifs du mémoire sont donc 1) de documenter les niveaux d’éthanolémie résultant de l’exposition par inhalation à de faibles concentrations d’éthanol (i.e., ≤ 1000 ppm) et de valider/raffiner le modèle PBPK existant pour ces concentrations ; et 2) de déterminer les concentrations d’éthanol atmosphérique provenant d’utilisation de SHA et de vernis et de prédire les niveaux d’éthanolémie découlant de leur utilisation. Les données toxicocinétiques récoltées chez des volontaires nous suggèrent qu’il est insuffisant de limiter au foie la clairance métabolique de l’éthanol lors d’exposition à de faibles niveaux d’éthanol, contrairement aux expositions à de plus forts niveaux. De plus, il a clairement été démontré qu’un effort physique léger (50 W) influençait à la hausse (2-3 fois) l’éthanolémie des volontaires exposés à 750 ppm. L’ajout au modèle PBPK d’une clairance métabolique de haute affinité et de faible capacité associée aux tissus richement perfusés a permis de simuler plus adéquatement la cinétique de l’éthanolémie pour des expositions à des concentrations inférieures à 1000 ppm. Des mesures de concentrations d’éthanol dans l’air inhalé générées lors d’utilisation de SHA et de vernis ont permis de simuler des expositions lors de l’utilisation de ces produits. Pour l’utilisation de 1,5 g et 3 g de SHA dans un local peu ventilé, des concentrations sanguines maximales (Cmax) de 0.383 et 0.366 mg.L-1 ont été respectivement simulées. Dans un local bien ventilé, les Cmax simulées étaient de 0.264 et 0.414 mg.L-1. Selon les simulations, une application de vernis résulterait en une Cmax respectivement de 0.719 mg.L-1 et de 0.729 mg.L-1, chez les hommes et femmes. Les Cmax sanguines d’éthanol estimées suites aux différentes simulations sont inférieures à la concentration toxique pour les humains (100 mg.L-1). Ainsi, de telles expositions ne semblent pas être un danger pour la santé. Les résultats de cette étude ont permis de mieux décrire et comprendre les processus d’élimination de l’éthanol à faibles doses et permettront de raffiner l’évaluation du risque associé à l’inhalation chronique de faibles niveaux d’éthanol pour la population, particulièrement chez les travailleurs. === A physiologically based pharmacokinetic model (PBPK) on inhalation exposure to ethanol has previously been developed based on data from an inhalation study in volunteers exposed to more than 5000 ppm. However, there remains uncertainty about the ability of the PBPK model to predict the blood levels of ethanol (BLE) for exposure to low concentrations. These levels are frequently encountered by a large part of the population and workers by using products such as varnishes and alcoholic solutions (HAS). It is therefore necessary to verify the validity of the existing model and determine the internal exposure to ethanol in such conditions. The objectives of this master’s thesis are 1) to document the BLE resulting from inhalation exposure to low concentrations of ethanol (i.e., ≤ 1000 ppm) and validate/refine the existing PBPK model for these concentrations, and 2) to determine the atmospheric concentrations of ethanol following the use of alcoholic solutions (HAS) and varnish as well as to predict the BLE resulting from their use. Toxicokinetic data collected from volunteers suggest that it is insufficient to limit metabolic clearance of ethanol to the liver during exposures to low levels of ethanol, unlike exposures to stronger levels. In addition, it was clearly demonstrated that light exercise (50W) increased (2-3 fold) the BLE in volunteers exposed to 750 ppm. An addition to the PBPK model of a metabolic clearance of high affinity and low capacity associated with richly perfused tissue was performed to simulate more accurately the toxicokinetic data from low and high ethanol exposure levels. Measurements of ethanol concentrations in inhaled air generated during the use of HAS and varnishes were used to simulate the exposure during the use of these products. The simulation for HAS, for 1.5 g and 3 g, gave a maximum blood concentration (Cmax) of 0.383 and 0.366 mg.L-1 respectively in a poorly ventilated room. In a well-ventilated room, the simulated Cmax for 1.5 g and 3 g of HAS were 0.264 and 0.414 mg.L-1, respectively. The simulation results from the use of ethanol-based varnish yielded a Cmax for men and women of 0.719 and 0.729 mg.L-1 respectively. The blood Cmax of ethanol previously listed for the various simulations are well below the toxic dose for humans (50 mg.L-1). Thus, such exposures do not seem to be a health hazard. The results of this study helped to better describe and understand the elimination of ethanol at low doses and refine the evaluation process associated with chronic inhalation of low levels of ethanol to the population risk, particularly in workers.
|