Sequential decision making in non-stationary environments
We consider the problem of sequential decision making in non-stationary environments. In order to avoid solutions that are too conservative, we capture the degree of non-stationarity in real-world problems through different mathematical models for the environment. In the first model, we add to the e...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2010
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92156 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.92156 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.921562014-02-13T03:55:56ZSequential decision making in non-stationary environmentsYu, Jia YuanApplied Sciences - Operations ResearchWe consider the problem of sequential decision making in non-stationary environments. In order to avoid solutions that are too conservative, we capture the degree of non-stationarity in real-world problems through different mathematical models for the environment. In the first model, we add to the environment a state that follows Markovian dynamics subject to limited levels of non-stationary uncertainty. In the second model, we add non-stationary constraints to the environment. In the third model, we limit the frequency of non-stationary changes. In each of these models, we provide efficient learning algorithms and prove corresponding performance guarantees that depend critically on the degree of non-stationarity.Nous étudions le problème de décisions séquentielles dans des environnements non-stationnaires. Pour éviter des solutions trop conservatrices, nous modélisons le degré de non-stationnarité à travers differents modèles mathématiques de l'environnement. Dans le premier modèle, nous ajoutons à l'environnement un état qui suit une dynamique Markovienne, sujet à des niveaux limités d'incertitude non-stationnaire. Dans le second modèle, nous ajoutons des contraintes non-stationnaires à l'environnement. Dans le troisième modèle, nous limitons la fréquence des changements non-stationnaires. Pour chaque modèle, nous présentons des algorithmes d'apprentissage efficients et prouvons des guaranties de performance qui dépendent du degré de non-stationnarité. McGill UniversityShie Mannor (Internal/Supervisor)2010Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Electrical and Computer Engineering) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92156 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Applied Sciences - Operations Research |
spellingShingle |
Applied Sciences - Operations Research Yu, Jia Yuan Sequential decision making in non-stationary environments |
description |
We consider the problem of sequential decision making in non-stationary environments. In order to avoid solutions that are too conservative, we capture the degree of non-stationarity in real-world problems through different mathematical models for the environment. In the first model, we add to the environment a state that follows Markovian dynamics subject to limited levels of non-stationary uncertainty. In the second model, we add non-stationary constraints to the environment. In the third model, we limit the frequency of non-stationary changes. In each of these models, we provide efficient learning algorithms and prove corresponding performance guarantees that depend critically on the degree of non-stationarity. === Nous étudions le problème de décisions séquentielles dans des environnements non-stationnaires. Pour éviter des solutions trop conservatrices, nous modélisons le degré de non-stationnarité à travers differents modèles mathématiques de l'environnement. Dans le premier modèle, nous ajoutons à l'environnement un état qui suit une dynamique Markovienne, sujet à des niveaux limités d'incertitude non-stationnaire. Dans le second modèle, nous ajoutons des contraintes non-stationnaires à l'environnement. Dans le troisième modèle, nous limitons la fréquence des changements non-stationnaires. Pour chaque modèle, nous présentons des algorithmes d'apprentissage efficients et prouvons des guaranties de performance qui dépendent du degré de non-stationnarité. |
author2 |
Shie Mannor (Internal/Supervisor) |
author_facet |
Shie Mannor (Internal/Supervisor) Yu, Jia Yuan |
author |
Yu, Jia Yuan |
author_sort |
Yu, Jia Yuan |
title |
Sequential decision making in non-stationary environments |
title_short |
Sequential decision making in non-stationary environments |
title_full |
Sequential decision making in non-stationary environments |
title_fullStr |
Sequential decision making in non-stationary environments |
title_full_unstemmed |
Sequential decision making in non-stationary environments |
title_sort |
sequential decision making in non-stationary environments |
publisher |
McGill University |
publishDate |
2010 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92156 |
work_keys_str_mv |
AT yujiayuan sequentialdecisionmakinginnonstationaryenvironments |
_version_ |
1716641779540819968 |