Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study

A series of studies is described here which explore the functional organisation of face- and object-processing neurones in the adult vervet monkey brain. This fundamental issue in high-level vision is addressed by the use of a novel molecular mapping technique that was developed for this purpose...

Full description

Bibliographic Details
Main Author: Zangenehpour, Shahin
Other Authors: Chaudhuri, Avijit (advisor)
Format: Others
Language:en
Published: McGill University 2003
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84859
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.84859
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.848592014-02-13T03:58:43ZBilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping studyZangenehpour, ShahinFace perception -- Physiological aspects.Form perception -- Physiological aspects.Cercopithecus aethiops -- Physiology.Visual cortex -- Physiology.Brain mapping.Molecular neurobiology.A series of studies is described here which explore the functional organisation of face- and object-processing neurones in the adult vervet monkey brain. This fundamental issue in high-level vision is addressed by the use of a novel molecular mapping technique that was developed for this purpose.In the first study, the temporal dynamics of c-fos and zif268 expression were delineated in detail in the rat visual cortex. Knowing the precise temporal parameters of up-regulation (after onset of sensory stimulation) and down-regulation (after offset of sensory stimulation) of these genes was integral to optimising the temporal aspects of the stimuli to be used for subsequent mapping experiments. This study provided the critical information for devising stimuli with corresponding temporal parameters to those of c-fos or zif268 so that one could take advantage of the disparity between the expression of their mRNA and protein products in order to visualise activated neurones.In the second study, the newly developed molecular mapping technique was validated in the rat auditory, visual and multisensory systems. First, bimodal audiovisual stimuli were designed using the data obtained from the first study. Then, through the combined histological detection of the mRNA and protein products of zif268, discrete populations of neurones responsive to either component of the bimodal stimulus were visualised. It was also observed that a third population of neurones was found that responded to the stimulation through both sensory modalities. The combined results from these two studies set the stage for addressing the issue of the organisation of face- and object-selective neurones of the inferior temporal cortex in the vervet monkey brain.In the third study, the functional organisation of face- and object-selective neurones was examined using the molecular mapping technique. Based on the data gathered from the first two studies, suitable stimuli containing two distinct object classes (conspecific faces and non-face familiar objects) were designed with appropriate temporal parameters.Finally, the last study provided an opportunity to address the issue of hemispheric asymmetry of function in the context of face processing in the non-human primate brain. Results support the notion that there may indeed be phylogenetic explanations for the hemispheric asymmetry observed in the human brain.McGill UniversityChaudhuri, Avijit (advisor)2003Electronic Thesis or Dissertationapplication/pdfenalephsysno: 002083313proquestno: AAINQ98393Theses scanned by UMI/ProQuest.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Psychology.) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84859
collection NDLTD
language en
format Others
sources NDLTD
topic Face perception -- Physiological aspects.
Form perception -- Physiological aspects.
Cercopithecus aethiops -- Physiology.
Visual cortex -- Physiology.
Brain mapping.
Molecular neurobiology.
spellingShingle Face perception -- Physiological aspects.
Form perception -- Physiological aspects.
Cercopithecus aethiops -- Physiology.
Visual cortex -- Physiology.
Brain mapping.
Molecular neurobiology.
Zangenehpour, Shahin
Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
description A series of studies is described here which explore the functional organisation of face- and object-processing neurones in the adult vervet monkey brain. This fundamental issue in high-level vision is addressed by the use of a novel molecular mapping technique that was developed for this purpose. === In the first study, the temporal dynamics of c-fos and zif268 expression were delineated in detail in the rat visual cortex. Knowing the precise temporal parameters of up-regulation (after onset of sensory stimulation) and down-regulation (after offset of sensory stimulation) of these genes was integral to optimising the temporal aspects of the stimuli to be used for subsequent mapping experiments. This study provided the critical information for devising stimuli with corresponding temporal parameters to those of c-fos or zif268 so that one could take advantage of the disparity between the expression of their mRNA and protein products in order to visualise activated neurones. === In the second study, the newly developed molecular mapping technique was validated in the rat auditory, visual and multisensory systems. First, bimodal audiovisual stimuli were designed using the data obtained from the first study. Then, through the combined histological detection of the mRNA and protein products of zif268, discrete populations of neurones responsive to either component of the bimodal stimulus were visualised. It was also observed that a third population of neurones was found that responded to the stimulation through both sensory modalities. The combined results from these two studies set the stage for addressing the issue of the organisation of face- and object-selective neurones of the inferior temporal cortex in the vervet monkey brain. === In the third study, the functional organisation of face- and object-selective neurones was examined using the molecular mapping technique. Based on the data gathered from the first two studies, suitable stimuli containing two distinct object classes (conspecific faces and non-face familiar objects) were designed with appropriate temporal parameters. === Finally, the last study provided an opportunity to address the issue of hemispheric asymmetry of function in the context of face processing in the non-human primate brain. Results support the notion that there may indeed be phylogenetic explanations for the hemispheric asymmetry observed in the human brain.
author2 Chaudhuri, Avijit (advisor)
author_facet Chaudhuri, Avijit (advisor)
Zangenehpour, Shahin
author Zangenehpour, Shahin
author_sort Zangenehpour, Shahin
title Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
title_short Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
title_full Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
title_fullStr Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
title_full_unstemmed Bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
title_sort bilateral distribution of face- and object-selective neurones in the adult vervet monkey inferotemporal cortex : a molecular mapping study
publisher McGill University
publishDate 2003
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84859
work_keys_str_mv AT zangenehpourshahin bilateraldistributionoffaceandobjectselectiveneuronesintheadultvervetmonkeyinferotemporalcortexamolecularmappingstudy
_version_ 1716642979278487552