Multiscale modeling and optimization of seashell structure and material
The vast majority of mollusks grow a hard shell for protection. Typical seashells are composed of two distinct layers, with an outer layer made of calcite (a hard but brittle material) and an inner layer made of a tough and ductile material called nacre. Nacre is a biocomposite material tha...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2009
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66991 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.66991 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.669912014-02-13T04:04:27ZMultiscale modeling and optimization of seashell structure and materialYourdkhani, MostafaEngineering - MechanicalThe vast majority of mollusks grow a hard shell for protection. Typical seashells are composed of two distinct layers, with an outer layer made of calcite (a hard but brittle material) and an inner layer made of a tough and ductile material called nacre. Nacre is a biocomposite material that consists of more than 95% of tablet-shape aragonite, CaCO3, and a soft organic material as matrix. Although the brittle ceramic aragonite composes a high volume fraction of nacre, its mechanical prop-erties are found to be surprisingly higher than those of its constituents. It has been suggested that calcite and nacre, two materials with distinct structures and proper-ties, are arranged in an optimal fashion to defeat attacks from predators. This re-search aims at exploring this hypothesis by capturing the design rules of a gastro-pod seashell using multiscale modeling and optimization techniques. At the mi-croscale, a representative volume element of the microstructure of nacre was used to formulate an analytical solution for the elastic modulus of nacre, and a multiax-ial failure criterion as a function of the microstructure. At the macroscale, a two-layer finite element model of the seashell was developed to include shell thick-ness, curvature and calcite/nacre thickness ratio as geometric parameters. The maximum load that the shell can carry at its apex was obtained. A multiscale op-timization approach was also employed to evaluate whether the natural seashell is optimally designed. Finally, actual penetration experiments were performed on red abalone shells to validate the results.Une vaste majorité des mollusques développent une coquille dure pour leur pro-tection. Une coquille typique est constitué de deux couches distinctes. La couche externe est faite de calcite (un matériau dur mais fragile), tandis que la couche in-terne est composée de nacre, un matériau plus résiliant et ductile. La nacre est un matériau biocomposite constitué de plus de 95% d'aragonite sous forme de ta-blette et d'un matériel organique souple qui forme la matrice. Bien que la cérami-que aragonite constitue une grande portion de la nacre, ses propriétés mécaniques sont étonnamment plus élevées de celles de ses constituants. La calcite et la nacre, deux matériaux avec des propriétés et des structures différentes, sont supposément étalonnées de façon optimale pour combattre les attaques de prédateurs. Cette étude cherche à déterminer les règles de construction d'une coquille de gastropode en utilisant la modélisation multi-échelle et des techniques d'optimisation. À l'échelle microscopique, un volume représentatif de la microstructure de la nacre a été utilisé pour formuler une solution analytique de son module d'élasticité et un critère de fracture multiaxial fonction des dimensions de la microstructure. À l'échelle macroscopique, un modèle d'éléments finis à deux couches de la co-quille à été utilisé pour représenter la curvature et le ratio calcite/nacre en fonction des paramètres géométriques. La charge maximale que la coquille peut supporter à son apex a été déterminée. Une approche d'optimisation multi-échelle a aussi été employée pour évaluer la reconstruction optimale du coquillage naturel. Fina-lement, plusieurs tests ont été effectués sur une coquille d'abalone rouge pour valider les résultats.McGill UniversityDamiano Pasini (Internal/Cosupervisor2)Francois Barthelat (Internal/Supervisor)2009Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Engineering (Department of Mechanical Engineering) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66991 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Engineering - Mechanical |
spellingShingle |
Engineering - Mechanical Yourdkhani, Mostafa Multiscale modeling and optimization of seashell structure and material |
description |
The vast majority of mollusks grow a hard shell for protection. Typical seashells are composed of two distinct layers, with an outer layer made of calcite (a hard but brittle material) and an inner layer made of a tough and ductile material called nacre. Nacre is a biocomposite material that consists of more than 95% of tablet-shape aragonite, CaCO3, and a soft organic material as matrix. Although the brittle ceramic aragonite composes a high volume fraction of nacre, its mechanical prop-erties are found to be surprisingly higher than those of its constituents. It has been suggested that calcite and nacre, two materials with distinct structures and proper-ties, are arranged in an optimal fashion to defeat attacks from predators. This re-search aims at exploring this hypothesis by capturing the design rules of a gastro-pod seashell using multiscale modeling and optimization techniques. At the mi-croscale, a representative volume element of the microstructure of nacre was used to formulate an analytical solution for the elastic modulus of nacre, and a multiax-ial failure criterion as a function of the microstructure. At the macroscale, a two-layer finite element model of the seashell was developed to include shell thick-ness, curvature and calcite/nacre thickness ratio as geometric parameters. The maximum load that the shell can carry at its apex was obtained. A multiscale op-timization approach was also employed to evaluate whether the natural seashell is optimally designed. Finally, actual penetration experiments were performed on red abalone shells to validate the results. === Une vaste majorité des mollusques développent une coquille dure pour leur pro-tection. Une coquille typique est constitué de deux couches distinctes. La couche externe est faite de calcite (un matériau dur mais fragile), tandis que la couche in-terne est composée de nacre, un matériau plus résiliant et ductile. La nacre est un matériau biocomposite constitué de plus de 95% d'aragonite sous forme de ta-blette et d'un matériel organique souple qui forme la matrice. Bien que la cérami-que aragonite constitue une grande portion de la nacre, ses propriétés mécaniques sont étonnamment plus élevées de celles de ses constituants. La calcite et la nacre, deux matériaux avec des propriétés et des structures différentes, sont supposément étalonnées de façon optimale pour combattre les attaques de prédateurs. Cette étude cherche à déterminer les règles de construction d'une coquille de gastropode en utilisant la modélisation multi-échelle et des techniques d'optimisation. À l'échelle microscopique, un volume représentatif de la microstructure de la nacre a été utilisé pour formuler une solution analytique de son module d'élasticité et un critère de fracture multiaxial fonction des dimensions de la microstructure. À l'échelle macroscopique, un modèle d'éléments finis à deux couches de la co-quille à été utilisé pour représenter la curvature et le ratio calcite/nacre en fonction des paramètres géométriques. La charge maximale que la coquille peut supporter à son apex a été déterminée. Une approche d'optimisation multi-échelle a aussi été employée pour évaluer la reconstruction optimale du coquillage naturel. Fina-lement, plusieurs tests ont été effectués sur une coquille d'abalone rouge pour valider les résultats. |
author2 |
Damiano Pasini (Internal/Cosupervisor2) |
author_facet |
Damiano Pasini (Internal/Cosupervisor2) Yourdkhani, Mostafa |
author |
Yourdkhani, Mostafa |
author_sort |
Yourdkhani, Mostafa |
title |
Multiscale modeling and optimization of seashell structure and material |
title_short |
Multiscale modeling and optimization of seashell structure and material |
title_full |
Multiscale modeling and optimization of seashell structure and material |
title_fullStr |
Multiscale modeling and optimization of seashell structure and material |
title_full_unstemmed |
Multiscale modeling and optimization of seashell structure and material |
title_sort |
multiscale modeling and optimization of seashell structure and material |
publisher |
McGill University |
publishDate |
2009 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66991 |
work_keys_str_mv |
AT yourdkhanimostafa multiscalemodelingandoptimizationofseashellstructureandmaterial |
_version_ |
1716644770504245248 |