Stochastic matrices and the Boyle and Handelman conjecture

Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$. === In this thesis, we prove that this conjecture is true for $n times n$ stochastic mat...

Full description

Bibliographic Details
Main Author: Ambikkumar, S. (Sithamparappillai)
Other Authors: Drury, S. W. (advisor)
Format: Others
Language:en
Published: McGill University 1995
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.22715
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.227152014-02-13T03:49:25ZStochastic matrices and the Boyle and Handelman conjectureAmbikkumar, S. (Sithamparappillai)Mathematics.Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$.In this thesis, we prove that this conjecture is true for $n times n$ stochastic matrices whose rank exceeds ${n over2}$.McGill UniversityDrury, S. W. (advisor)1995Electronic Thesis or Dissertationapplication/pdfenalephsysno: 001461550proquestno: MM05527Theses scanned by UMI/ProQuest.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Science (Department of Mathematics and Statistics.) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715
collection NDLTD
language en
format Others
sources NDLTD
topic Mathematics.
spellingShingle Mathematics.
Ambikkumar, S. (Sithamparappillai)
Stochastic matrices and the Boyle and Handelman conjecture
description Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$. === In this thesis, we prove that this conjecture is true for $n times n$ stochastic matrices whose rank exceeds ${n over2}$.
author2 Drury, S. W. (advisor)
author_facet Drury, S. W. (advisor)
Ambikkumar, S. (Sithamparappillai)
author Ambikkumar, S. (Sithamparappillai)
author_sort Ambikkumar, S. (Sithamparappillai)
title Stochastic matrices and the Boyle and Handelman conjecture
title_short Stochastic matrices and the Boyle and Handelman conjecture
title_full Stochastic matrices and the Boyle and Handelman conjecture
title_fullStr Stochastic matrices and the Boyle and Handelman conjecture
title_full_unstemmed Stochastic matrices and the Boyle and Handelman conjecture
title_sort stochastic matrices and the boyle and handelman conjecture
publisher McGill University
publishDate 1995
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715
work_keys_str_mv AT ambikkumarssithamparappillai stochasticmatricesandtheboyleandhandelmanconjecture
_version_ 1716639681875017728