Stochastic matrices and the Boyle and Handelman conjecture
Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$. === In this thesis, we prove that this conjecture is true for $n times n$ stochastic mat...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
1995
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.22715 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.227152014-02-13T03:49:25ZStochastic matrices and the Boyle and Handelman conjectureAmbikkumar, S. (Sithamparappillai)Mathematics.Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$.In this thesis, we prove that this conjecture is true for $n times n$ stochastic matrices whose rank exceeds ${n over2}$.McGill UniversityDrury, S. W. (advisor)1995Electronic Thesis or Dissertationapplication/pdfenalephsysno: 001461550proquestno: MM05527Theses scanned by UMI/ProQuest.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Science (Department of Mathematics and Statistics.) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Mathematics. |
spellingShingle |
Mathematics. Ambikkumar, S. (Sithamparappillai) Stochastic matrices and the Boyle and Handelman conjecture |
description |
Let A be an $n times n$ stochastic matrix with rank($A) leq r (1 leq r leq n$). A reformulation of the Boyle and Handelman Conjecture is det($I-tA) leq1-t sp{r}$ for all real numbers t satisfying $0 leq t leq1$. === In this thesis, we prove that this conjecture is true for $n times n$ stochastic matrices whose rank exceeds ${n over2}$. |
author2 |
Drury, S. W. (advisor) |
author_facet |
Drury, S. W. (advisor) Ambikkumar, S. (Sithamparappillai) |
author |
Ambikkumar, S. (Sithamparappillai) |
author_sort |
Ambikkumar, S. (Sithamparappillai) |
title |
Stochastic matrices and the Boyle and Handelman conjecture |
title_short |
Stochastic matrices and the Boyle and Handelman conjecture |
title_full |
Stochastic matrices and the Boyle and Handelman conjecture |
title_fullStr |
Stochastic matrices and the Boyle and Handelman conjecture |
title_full_unstemmed |
Stochastic matrices and the Boyle and Handelman conjecture |
title_sort |
stochastic matrices and the boyle and handelman conjecture |
publisher |
McGill University |
publishDate |
1995 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22715 |
work_keys_str_mv |
AT ambikkumarssithamparappillai stochasticmatricesandtheboyleandhandelmanconjecture |
_version_ |
1716639681875017728 |