Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy

This thesis presents the application of k-space Image Correlation Spec- troscopy (kICS) to the analysis of fluorescence microscopy image time series for the measurement of particle diffusion in heterogeneous membranes, composed of micro- domains. The extension, testing and application of kICS for su...

Full description

Bibliographic Details
Main Author: Pandžić, Elvis
Other Authors: Paul Wiseman (Supervisor)
Format: Others
Language:en
Published: McGill University 2013
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.116842
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Biophysics - General
spellingShingle Biophysics - General
Pandžić, Elvis
Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
description This thesis presents the application of k-space Image Correlation Spec- troscopy (kICS) to the analysis of fluorescence microscopy image time series for the measurement of particle diffusion in heterogeneous membranes, composed of micro- domains. The extension, testing and application of kICS for such measurements is developed both in silico with simulation and with in vivo cellular experiments.Connections between kICS analysis and other existing fluorescent microscopy techniques used in the study of heterogeneous membranes, such as single particle tracking (SPT) and spot vary Fluorescence Correlation Spectroscopy (FCS) are introduced. This is followed by the development of kICS theory of fluorescent particle diffusion within a heterogeneous two dimensional (2D) environment. Two possible membrane heterogeneities, isolated lipid micro-domains and actin proximal meshwork, are considered separately. The emergent models suggest that the kICS correlation function (CF) can be fit by a sum of two Gaussians in the case of particle diffusion in the presence of isolated micro-domains. These two fit components, called 'fast' and 'slow', with the fast associated with the rapid decay of the kICS CF at small spatial frequencies due to particle motion on large spatial scales outside domains while the slow component refers to the confined particle motion on large spatial frequencies or small spatial scales in domains. On the other hand, the meshwork confinement is well fit with a single Gaussian model for the analysis of kICS CF. These models suggest that the exponents and amplitudes of the fits embed the characteristic system parameters such as diffusion coefficients outside and inside domains, the partitioning rates, micro-domains radii and mesh pore size.Furthermore, systematic simulations to study different confinement scenarios were conducted and the calculated kICS correlation functions were fit and the output interpreted for recovery of self system parameters. The characterization of the simulated data suggests that kICS CFs exhibit various confinement dependent features, such as decays due to effective slow and fast dynamics populations and effective domain sizes. The in silico characterization of different confinement scenarios, suggests a connection between the apparent measured confinement properties, and the set system defining parameters. We explore the range and limits where confinement effects can be detected and accurately measured by kICS analysis. Possible systematic errors in the values of the fit extracted parameters due to background noise is discussed with possible alternative solutions.Finally, we apply this extension of kICS to the heterogeneous membrane en- vironment to explore the confinement dynamics of GPI-GFP anchored proteins in the basal plasma membrane of COS-7 cells. We employ a novel labelling approach of GPI-GFP using anti-GFP-Alexa594 and image the protein in COS-7 cell mem- branes with TIRF microscopy. Cells were exposed to enzymatic treatments, using the Cholesterol Oxidase (COase) and Sphingomyelinase (SMase), in order to dis- rupt membrane domains and change GPI-GFP confinement dynamics. We observe that GPI-GFP mobility and the effective domain size measured correlates with the enzymatic exposure time. We attribute it to the conversion of the membrane domain constituents, cholesterol and sphingomyelin, upon the enzymatic reactions, leading to membrane domain that are effectively larger and leakier. Finally, we conclude with possible improvements and future directions. === La thèse qui suit est a propos de l'adaptation de la technique de la spectroscopie par la corrélation des images dans l'espace de Fourier, appelle kICS. La nouveauté consiste en utilisation de kICS pour analyser les séries temporelles d'images fluorescentes afin de caractériser la diffusion des particules en présence des membranes hétérogénes, composées de micro-domaines.Tout d'abord, une parallèle est exposée entre l'analyse fondée sur kICS pro- posé ci-dessus et d'autres techniques de microscopie à fluorescence existantes et utilisées dans l'étude des membranes hétérogénes. Ensuite, on expose le développement de la théorie de kICS dans les cas de la diffusion des particules fluorescentes dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités membranaires possibles, micro-domaines lipidiques isolés et le réseau de l'actine proximale, sont considérés séparément. Les modèles émergents suggèrent que la fonction de corrélation de kICS doit être caractérisé par une somme de deux Gaussiennes dans le cas de la dynamique des particules en présence de micro-domaines isolés. Ces deux éléments, appelés 'rapide' et 'lent', représentent les composantes dynamiques a deux échelles d'espace différentes. La rapide est associé à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences spatiales dues au mouvement des particules sur de grandes échelles spatiales. La composante lente réfère au mouvement des particules confinées à des petites échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D'autre part, la fonction de corrélation de kICS due au confinement par le réseau du cytosquelette peut être caractérise par unique décroissance Gaussienne. Ces modèles suggèrent que les exposants et les amplitudes obtenus par la caractérisation de la fonction kICS dépend des paramètres caractéristiques du système tels que les coefficients de diffusion à l'extérieur et à l'intérieur de domaines, les taux de migration de particules vers intérieur ou extérieur de micro-domaines ou des tailles de porosités du réseaux du cytosquelette.Les études systématiques par les simulations des scénarios différents de confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés. La caractérisation des données simulées suggèrent que les fonctions de corrélation ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques, tels que la dynamique des populations lents et rapides et la tailles effective de micro-domaines. La caractérisation des scénarios de confinement différents, représente les liens entre les propriétés apparentes mesurées de confinement, et un ensemble de paramètres définissant hétérogénéité. Nous explorons les limites pour lesquelles des effets de confinement ne sont pas observées dans la fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs des paramètres extraits à cause du bruit de fond est discuté avec des possibles solutions. Finalement, nous utilisons l'analyse afin d'explorer la dynamique de confinement de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de perturber domaines membranaires et changer la dynamique de confinement de GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques, ce qui conduit aux plus grandes et moins étanches domaines membranaires.
author2 Paul Wiseman (Supervisor)
author_facet Paul Wiseman (Supervisor)
Pandžić, Elvis
author Pandžić, Elvis
author_sort Pandžić, Elvis
title Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
title_short Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
title_full Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
title_fullStr Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
title_full_unstemmed Measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
title_sort measurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopy
publisher McGill University
publishDate 2013
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842
work_keys_str_mv AT pandzicelvis measurementofproteintransportandconfinementinheterogeneousmembranesbykspaceimagecorrelationspectroscopy
_version_ 1716646931152764928
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1168422014-02-13T04:11:02ZMeasurement of protein transport and confinement in heterogeneous membranes by k-space image correlation spectroscopyPandžić, ElvisBiophysics - GeneralThis thesis presents the application of k-space Image Correlation Spec- troscopy (kICS) to the analysis of fluorescence microscopy image time series for the measurement of particle diffusion in heterogeneous membranes, composed of micro- domains. The extension, testing and application of kICS for such measurements is developed both in silico with simulation and with in vivo cellular experiments.Connections between kICS analysis and other existing fluorescent microscopy techniques used in the study of heterogeneous membranes, such as single particle tracking (SPT) and spot vary Fluorescence Correlation Spectroscopy (FCS) are introduced. This is followed by the development of kICS theory of fluorescent particle diffusion within a heterogeneous two dimensional (2D) environment. Two possible membrane heterogeneities, isolated lipid micro-domains and actin proximal meshwork, are considered separately. The emergent models suggest that the kICS correlation function (CF) can be fit by a sum of two Gaussians in the case of particle diffusion in the presence of isolated micro-domains. These two fit components, called 'fast' and 'slow', with the fast associated with the rapid decay of the kICS CF at small spatial frequencies due to particle motion on large spatial scales outside domains while the slow component refers to the confined particle motion on large spatial frequencies or small spatial scales in domains. On the other hand, the meshwork confinement is well fit with a single Gaussian model for the analysis of kICS CF. These models suggest that the exponents and amplitudes of the fits embed the characteristic system parameters such as diffusion coefficients outside and inside domains, the partitioning rates, micro-domains radii and mesh pore size.Furthermore, systematic simulations to study different confinement scenarios were conducted and the calculated kICS correlation functions were fit and the output interpreted for recovery of self system parameters. The characterization of the simulated data suggests that kICS CFs exhibit various confinement dependent features, such as decays due to effective slow and fast dynamics populations and effective domain sizes. The in silico characterization of different confinement scenarios, suggests a connection between the apparent measured confinement properties, and the set system defining parameters. We explore the range and limits where confinement effects can be detected and accurately measured by kICS analysis. Possible systematic errors in the values of the fit extracted parameters due to background noise is discussed with possible alternative solutions.Finally, we apply this extension of kICS to the heterogeneous membrane en- vironment to explore the confinement dynamics of GPI-GFP anchored proteins in the basal plasma membrane of COS-7 cells. We employ a novel labelling approach of GPI-GFP using anti-GFP-Alexa594 and image the protein in COS-7 cell mem- branes with TIRF microscopy. Cells were exposed to enzymatic treatments, using the Cholesterol Oxidase (COase) and Sphingomyelinase (SMase), in order to dis- rupt membrane domains and change GPI-GFP confinement dynamics. We observe that GPI-GFP mobility and the effective domain size measured correlates with the enzymatic exposure time. We attribute it to the conversion of the membrane domain constituents, cholesterol and sphingomyelin, upon the enzymatic reactions, leading to membrane domain that are effectively larger and leakier. Finally, we conclude with possible improvements and future directions.La thèse qui suit est a propos de l'adaptation de la technique de la spectroscopie par la corrélation des images dans l'espace de Fourier, appelle kICS. La nouveauté consiste en utilisation de kICS pour analyser les séries temporelles d'images fluorescentes afin de caractériser la diffusion des particules en présence des membranes hétérogénes, composées de micro-domaines.Tout d'abord, une parallèle est exposée entre l'analyse fondée sur kICS pro- posé ci-dessus et d'autres techniques de microscopie à fluorescence existantes et utilisées dans l'étude des membranes hétérogénes. Ensuite, on expose le développement de la théorie de kICS dans les cas de la diffusion des particules fluorescentes dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités membranaires possibles, micro-domaines lipidiques isolés et le réseau de l'actine proximale, sont considérés séparément. Les modèles émergents suggèrent que la fonction de corrélation de kICS doit être caractérisé par une somme de deux Gaussiennes dans le cas de la dynamique des particules en présence de micro-domaines isolés. Ces deux éléments, appelés 'rapide' et 'lent', représentent les composantes dynamiques a deux échelles d'espace différentes. La rapide est associé à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences spatiales dues au mouvement des particules sur de grandes échelles spatiales. La composante lente réfère au mouvement des particules confinées à des petites échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D'autre part, la fonction de corrélation de kICS due au confinement par le réseau du cytosquelette peut être caractérise par unique décroissance Gaussienne. Ces modèles suggèrent que les exposants et les amplitudes obtenus par la caractérisation de la fonction kICS dépend des paramètres caractéristiques du système tels que les coefficients de diffusion à l'extérieur et à l'intérieur de domaines, les taux de migration de particules vers intérieur ou extérieur de micro-domaines ou des tailles de porosités du réseaux du cytosquelette.Les études systématiques par les simulations des scénarios différents de confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés. La caractérisation des données simulées suggèrent que les fonctions de corrélation ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques, tels que la dynamique des populations lents et rapides et la tailles effective de micro-domaines. La caractérisation des scénarios de confinement différents, représente les liens entre les propriétés apparentes mesurées de confinement, et un ensemble de paramètres définissant hétérogénéité. Nous explorons les limites pour lesquelles des effets de confinement ne sont pas observées dans la fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs des paramètres extraits à cause du bruit de fond est discuté avec des possibles solutions. Finalement, nous utilisons l'analyse afin d'explorer la dynamique de confinement de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de perturber domaines membranaires et changer la dynamique de confinement de GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques, ce qui conduit aux plus grandes et moins étanches domaines membranaires.McGill UniversityPaul Wiseman (Supervisor)2013Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Physics) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116842