Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells
The increasing demand for energy and the necessity to overcome the depletion of fossil fuel supplies requires that alternative energy sources be developed. Solid Oxide Fuel Cells (SOFCs) are one of the alternative technologies to minimise our dependence on fossil fuel due to their numerous advantage...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2012
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106426 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.106426 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Engineering - Materials Science |
spellingShingle |
Engineering - Materials Science Aguilar Diaz, Yaneth Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
description |
The increasing demand for energy and the necessity to overcome the depletion of fossil fuel supplies requires that alternative energy sources be developed. Solid Oxide Fuel Cells (SOFCs) are one of the alternative technologies to minimise our dependence on fossil fuel due to their numerous advantages including high efficiency, long-term stability, fuel flexibility and low emissions. However, the development of reliable sealing techniques remains a crucial challenge to overcome to allow usable efficiency and facilitate commercialization. Sealing technology has been object of research for several years. Nevertheless, the optimal solution is yet to be found. The use of a glass composite approach is attractive as it allows the possibility of engineering the properties of the seal, by independently adjusting the particle size distribution and volume fraction of the additives. In the present work, the interaction between various SiO2 based glasses with nickel and B2O3 based glasses with silver were studied. Results as a function of additive particle size distribution (7-100 microns) and volume fraction (0-18%) will be presented. Micrographs, X-ray patterns and CTE measurements showed that the proposed systems have adequate characteristics for usage as seal for fuel cells due to the inertness of the additive particles with the respective glass matrix and predictable long-term chemical and thermal stability. The use of DTMA as a technique to calculate the onset of residual stresses, explores the influence of the additive and its interfacial interactions on the dissipation of energy during deformation. The multi-frequency test lead to an activation energy for stress relaxation between 400 and 600 kJ/mol depending on the different additive content. Furthermore, the temperature difference between de Tg and the onset of residual stresses was calculated showing that increments on the additive content results on a larger temperature range that allows stress relaxation. The mechanical response under compression test was also investigated to identify the potential deformation of a stack during service. The results showed that the glass composites can experience large deformations during the entire service cycle and not only during the isothermal service hold. Moreover, the microstructure in terms of crystalline phase evolves with the test temperature and the applied force, showing an increase of the crystals volume fraction when either the temperature of the applied load increase. The microstructures showed that the additive is getting aligned during deformation, providing an increased resistance to compression against flow of the viscous glass composite. Finally the measurement of the residual stresses as function of cooling rate and additive content revealed that the residual stresses development is minimised for a combination of service conditions including cooling rate under 20 °C/min and glass composite containing a minimum of 12 %vol. Such operating conditions should contribute to maximise the service life of a SOFC stack. === La demande croissante en énergie et la nécessité de surmonter les défis d'épuisement des réserves de combustibles fossiles exigent que des sources d'énergies alternatives soient développées. Les piles à combustible à électrolyte solide sont l'une des technologies alternatives pour réduire notre dépendance aux combustibles fossiles en raison de leurs nombreux avantages, y compris leur haute efficacité, stabilité à long terme, flexibilité dans le choix du carburant et leurs faibles émissions. Cependant, le développement de techniques fiables pour joindre les composantes demeure un défi important à relever pour obtenir une efficacité utilisable et pour faciliter la commercialisation. Les technologies de jointage ont été l'objet de recherches depuis plusieurs années. Néanmoins, la solution optimale demeure encore à être trouvée. L'approche du composite de verre est intéressante car elle permet la possibilité d'optimiser les propriétés du joint en ajustant de façon indépendante la distribution de la taille des particules et la fraction volumique des additifs. Dans le présent travail, l'interaction entre des différents verres composites SiO2 avec nickel, et des verres composite B2O3 avec de l'argent ont été étudiés. Les résultats, en fonction de la distribution de la taille des particules (7-100 microns) et la fraction volumique des additifs (0-18%) seront présentés. Les micrographies, la diffraction des rayons X et les calculs du coefficient d'expansion thermique ont démontré que les systèmes proposés ont les caractéristiques adéquates pour leur utilisation en tant que joint pour les piles à combustible, en raison de l'inertie des particules d'additif avec la matrice de verre, et en raison de la prévisibilité à long terme de la stabilité chimique et thermique. L'utilisation de l'analyse thermomécanique dynamique comme technique pour calculer l'apparition de contraintes résiduelles, explore l'influence de l'additif et ses interactions relatives à l'égard de la dissipation de l'énergie pendant la déformation. Les tests à multifréquences a mené à une énergie d'activation variant entre 400 et 600 kJ/mole pour la relaxation des contraintes, er ce en fonction des différentes quantités d'additifs. De plus, la différence de température entre Tg et l'apparition de contraintes résiduelles a été calculée, et démontre que des incréments de quantités d'additif résultent en un augmentation de l'interval de températures pouvant permettre la relaxation des contraintes. Les résultats du point de vue mécanique, pour des tests de compression ont également été étudiés afin d'identifier les déformations potentielles des assemblages durant l'opération. Les résultats ont montré que les composites de verre peuvent subir de grandes déformations au cours du cycle entier d'opération et non pas seulement pendant la période isotherme. De plus, la microstructure, en termes de phases cristallines, évolue avec la température d'essai et la force appliquée, montrant une augmentation de la fraction volumique des cristaux avec l'augmentation de la température et de la charge appliquée. Les microstructures ont démontré que les particules s'alignent pendant la déformation, offrant une résistance accrue contre la compression, résultant de l'écoulement du composite de verre visqueux. Enfin, le calcul des contraintes résiduelles en fonction de la vitesse de refroidissement et de la fraction volumique d'additifs a révélé que le développement des contraintes résiduel est minimisé dans quelques combinaisons de conditions d'opération, incluant un taux de refroidissement en dessous de 20 °C/min et une fraction volumique minimum de 12% en additif. Ces conditions d'opérations devraient contribuer à maximiser la durée de vie des assemblages de piles à combustible à électrolyte solide. |
author2 |
Mathieu Brochu (Internal/Supervisor) |
author_facet |
Mathieu Brochu (Internal/Supervisor) Aguilar Diaz, Yaneth |
author |
Aguilar Diaz, Yaneth |
author_sort |
Aguilar Diaz, Yaneth |
title |
Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
title_short |
Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
title_full |
Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
title_fullStr |
Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
title_full_unstemmed |
Evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
title_sort |
evaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cells |
publisher |
McGill University |
publishDate |
2012 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106426 |
work_keys_str_mv |
AT aguilardiazyaneth evaluationofsilicabasednickelandboratebasedsilverglasscompositesforsealingsolidoxidefuelcells |
_version_ |
1716647092248641536 |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1064262014-02-13T04:12:04ZEvaluation of silica-based/nickel and borate-based/silver glass composites for sealing solid oxide fuel cellsAguilar Diaz, YanethEngineering - Materials ScienceThe increasing demand for energy and the necessity to overcome the depletion of fossil fuel supplies requires that alternative energy sources be developed. Solid Oxide Fuel Cells (SOFCs) are one of the alternative technologies to minimise our dependence on fossil fuel due to their numerous advantages including high efficiency, long-term stability, fuel flexibility and low emissions. However, the development of reliable sealing techniques remains a crucial challenge to overcome to allow usable efficiency and facilitate commercialization. Sealing technology has been object of research for several years. Nevertheless, the optimal solution is yet to be found. The use of a glass composite approach is attractive as it allows the possibility of engineering the properties of the seal, by independently adjusting the particle size distribution and volume fraction of the additives. In the present work, the interaction between various SiO2 based glasses with nickel and B2O3 based glasses with silver were studied. Results as a function of additive particle size distribution (7-100 microns) and volume fraction (0-18%) will be presented. Micrographs, X-ray patterns and CTE measurements showed that the proposed systems have adequate characteristics for usage as seal for fuel cells due to the inertness of the additive particles with the respective glass matrix and predictable long-term chemical and thermal stability. The use of DTMA as a technique to calculate the onset of residual stresses, explores the influence of the additive and its interfacial interactions on the dissipation of energy during deformation. The multi-frequency test lead to an activation energy for stress relaxation between 400 and 600 kJ/mol depending on the different additive content. Furthermore, the temperature difference between de Tg and the onset of residual stresses was calculated showing that increments on the additive content results on a larger temperature range that allows stress relaxation. The mechanical response under compression test was also investigated to identify the potential deformation of a stack during service. The results showed that the glass composites can experience large deformations during the entire service cycle and not only during the isothermal service hold. Moreover, the microstructure in terms of crystalline phase evolves with the test temperature and the applied force, showing an increase of the crystals volume fraction when either the temperature of the applied load increase. The microstructures showed that the additive is getting aligned during deformation, providing an increased resistance to compression against flow of the viscous glass composite. Finally the measurement of the residual stresses as function of cooling rate and additive content revealed that the residual stresses development is minimised for a combination of service conditions including cooling rate under 20 °C/min and glass composite containing a minimum of 12 %vol. Such operating conditions should contribute to maximise the service life of a SOFC stack.La demande croissante en énergie et la nécessité de surmonter les défis d'épuisement des réserves de combustibles fossiles exigent que des sources d'énergies alternatives soient développées. Les piles à combustible à électrolyte solide sont l'une des technologies alternatives pour réduire notre dépendance aux combustibles fossiles en raison de leurs nombreux avantages, y compris leur haute efficacité, stabilité à long terme, flexibilité dans le choix du carburant et leurs faibles émissions. Cependant, le développement de techniques fiables pour joindre les composantes demeure un défi important à relever pour obtenir une efficacité utilisable et pour faciliter la commercialisation. Les technologies de jointage ont été l'objet de recherches depuis plusieurs années. Néanmoins, la solution optimale demeure encore à être trouvée. L'approche du composite de verre est intéressante car elle permet la possibilité d'optimiser les propriétés du joint en ajustant de façon indépendante la distribution de la taille des particules et la fraction volumique des additifs. Dans le présent travail, l'interaction entre des différents verres composites SiO2 avec nickel, et des verres composite B2O3 avec de l'argent ont été étudiés. Les résultats, en fonction de la distribution de la taille des particules (7-100 microns) et la fraction volumique des additifs (0-18%) seront présentés. Les micrographies, la diffraction des rayons X et les calculs du coefficient d'expansion thermique ont démontré que les systèmes proposés ont les caractéristiques adéquates pour leur utilisation en tant que joint pour les piles à combustible, en raison de l'inertie des particules d'additif avec la matrice de verre, et en raison de la prévisibilité à long terme de la stabilité chimique et thermique. L'utilisation de l'analyse thermomécanique dynamique comme technique pour calculer l'apparition de contraintes résiduelles, explore l'influence de l'additif et ses interactions relatives à l'égard de la dissipation de l'énergie pendant la déformation. Les tests à multifréquences a mené à une énergie d'activation variant entre 400 et 600 kJ/mole pour la relaxation des contraintes, er ce en fonction des différentes quantités d'additifs. De plus, la différence de température entre Tg et l'apparition de contraintes résiduelles a été calculée, et démontre que des incréments de quantités d'additif résultent en un augmentation de l'interval de températures pouvant permettre la relaxation des contraintes. Les résultats du point de vue mécanique, pour des tests de compression ont également été étudiés afin d'identifier les déformations potentielles des assemblages durant l'opération. Les résultats ont montré que les composites de verre peuvent subir de grandes déformations au cours du cycle entier d'opération et non pas seulement pendant la période isotherme. De plus, la microstructure, en termes de phases cristallines, évolue avec la température d'essai et la force appliquée, montrant une augmentation de la fraction volumique des cristaux avec l'augmentation de la température et de la charge appliquée. Les microstructures ont démontré que les particules s'alignent pendant la déformation, offrant une résistance accrue contre la compression, résultant de l'écoulement du composite de verre visqueux. Enfin, le calcul des contraintes résiduelles en fonction de la vitesse de refroidissement et de la fraction volumique d'additifs a révélé que le développement des contraintes résiduel est minimisé dans quelques combinaisons de conditions d'opération, incluant un taux de refroidissement en dessous de 20 °C/min et une fraction volumique minimum de 12% en additif. Ces conditions d'opérations devraient contribuer à maximiser la durée de vie des assemblages de piles à combustible à électrolyte solide.McGill UniversityMathieu Brochu (Internal/Supervisor)Robin Drew (Internal/Cosupervisor2)2012Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Mining and Materials Engineering) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106426 |