Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR

This Thesis presents the synthesis of a new family of liquid crystal (LC)-capped gold nanoparticles (AuNPs) for a rationalized miscibility and assembly in liquid crystal matrices.A new protocol based on the thiol-for-dimethylaminopyridine (DMAP) ligand exchange reaction was developed to prepare 4-5...

Full description

Bibliographic Details
Main Author: Milette, Jonathan
Other Authors: Linda G Reven (Internal/Supervisor)
Format: Others
Language:en
Published: McGill University 2012
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106294
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.106294
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Chemistry - Physical
spellingShingle Chemistry - Physical
Milette, Jonathan
Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
description This Thesis presents the synthesis of a new family of liquid crystal (LC)-capped gold nanoparticles (AuNPs) for a rationalized miscibility and assembly in liquid crystal matrices.A new protocol based on the thiol-for-dimethylaminopyridine (DMAP) ligand exchange reaction was developed to prepare 4-5 nm AuNPs with mono and binary capping layers made of alkanethiol (CH3(CH2)mSH; m = 5, 11) and liquid crystal ligand 4'-(n-mercaptoalkoxy)biphenyl-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). AuNPs with a 1 : 1 CH3(CH2)5SH/CBO(CH2)12SH ratio were found to have an unprecedented miscibility in isotropic 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4-n-octyl-4'-cyanobiphenyl (8CB) liquid crystals exceeding 25 wt% Au. While low NP concentrations are normally used to avoid aggregation, concentrated dispersions of these AuNPs form new structures at the LC phase transitions through coupling of the interparticle attractive forces with the LC elastic interactions. Upon cooling to TN-I, the AuNPs form a reversible, micron-scale network by concentrating at the nematic-isotropic liquid interfaces. The network topology and LC director field orientation are controlled by the cooling rate, surface alignment, film thickness, AuNP concentration and ligand shell composition. Completely different structures are formed at the nematic to smectic phase transition. AuNPs dispersed in homotropically aligned LC films reversibly form macroscopic domains of curved or linear arrays with micron scale periodicities. Based on the variation of the arrays with boundary conditions, AuNPs are proposed to concentrate at the edge dislocation defects in the smectic phase. The molecular interactions that determine the miscibility and assembly of the AuNPs in LCs were studied using multinuclear solid-state NMR and isotopically labeled AuNPs and LCs. The interaction of the host LC with the AuNP surfaces is striking manifested by partial alignment of the ligands. The detection of an isotropic-nematic biphasic region of the host LC matrix below TN-I is an important finding that will be used to refine theoretical models of the network formation. Finally another type of nanoparticle network, formed by aerosil in a Schiff-base-type of LC with a small dipole moment was studied by wideline 2H NMR to investigate the effect of different surface anchoring strengths on the memory effects displayed by these dispersions. === Cette Thèse présente la synthèse d'une nouvelle famille de nanoparticules (NPs) d'or enrobées de cristaux liquides (CLs) afin de rationaliser leur miscibilité et assemblage dans des matrices faites de cristaux liquides. Un nouveau protocole basé sur la réaction d'échange de ligand thiol-pour-diméthylaminopyridine (DMAP) a été développé afin de préparer des NPs d'or de 4 à 5 nm de diamètre avec une monocouche simple et binaire faite d'alcanethiol (CH3(CH2)mSH; m = 5, 11) et du ligand CL 4'-(n-mercaptoalkoxy)biphényle-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). Nous avons découvert que les NPs d'or avec un ratio de 1:1 des ligands CH3(CH2)5SH/CBO(CH2)12SH possèdent une miscibilité sans précédent jusqu'à 25% en poids d'or dans la phase isotrope des CLs 4-n-pentyl-4'-cyanobiphényle (5CB) and 4-n-octyl-4'-cyanobiphényle (8CB). Bien qu'une faible concentration en NPs soit normallement utilisée afin d'éviter la formation d'agrégats, les dispersions concentrées de ces NPs d'or forment de nouvelles structures à la tansition de phase du CL par l'entremise du couplage des forces d'attraction interparticulaires avec les intéractions élastiques du CL. En refroidissant à TN-I, les NPs d'or forment de manière réversible un réseau à l'échelle microscopique en se concentrant à l'interphase nématique-isotrope. La topologie et l'orientation du domaine des directeurs CL sont controllées par la vitesse de refroidissement, l'alignement de surface, l'épaisseur du film, et la concentration et composition de la monocouche des NPs d'or. Des structures tout à fait différentes sont formées à la transition de phase nématique à smectique. Les NPs d'or dispersées dans des films de CLs alignés homotropiquement forment de manière réversible des domaines macroscopique de rayures parallèles courbées ou droites ayant une périodicité microscopique. Selon la variation des rayures en function des limites de surface, nous proposons que les NPs d'or se concentrent aux défauts des dislocations coin dans la phase smectique.Les intéractions moléculaires qui déterminent la miscibilité et l'assemblage des NPs d'or dans des CLs ont été étudiées avec l'aide la RMN multinucléaire à l'état solide, et de NPs d'or et CLs marqués isotopiquement. L'intéraction de la matrice CL avec la surface des NPs d'or se manisfeste de manière surprenante par l'alignement partielle des ligands. La détection d'une région biphasique isotrope-nématique de la matrice CL en-dessous de TN-I est une découverte importante qui va être utilisée afin de perfectionner les modèles thèoriques de la formation de réseaux. Finallement, un autre modèle de réseau fait de NPs, formé à partir de la dispersion d'aérosil dans un CL base de Shiff et ayant un moment dipolaire faible, a été étudié par la RMN du 2H. Nous avons examiné l'impact qu'a différentes forces d'ancrage de surface sur l'effet mémoire qu'affiche ces dispersions.
author2 Linda G Reven (Internal/Supervisor)
author_facet Linda G Reven (Internal/Supervisor)
Milette, Jonathan
author Milette, Jonathan
author_sort Milette, Jonathan
title Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
title_short Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
title_full Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
title_fullStr Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
title_full_unstemmed Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR
title_sort study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state nmr
publisher McGill University
publishDate 2012
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106294
work_keys_str_mv AT milettejonathan studyofnanoparticleliquidcrystaldispersionsusingopticalmicroscopyandsolidstatenmr
_version_ 1716646111259656192
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1062942014-02-13T04:09:19ZStudy of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMRMilette, JonathanChemistry - PhysicalThis Thesis presents the synthesis of a new family of liquid crystal (LC)-capped gold nanoparticles (AuNPs) for a rationalized miscibility and assembly in liquid crystal matrices.A new protocol based on the thiol-for-dimethylaminopyridine (DMAP) ligand exchange reaction was developed to prepare 4-5 nm AuNPs with mono and binary capping layers made of alkanethiol (CH3(CH2)mSH; m = 5, 11) and liquid crystal ligand 4'-(n-mercaptoalkoxy)biphenyl-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). AuNPs with a 1 : 1 CH3(CH2)5SH/CBO(CH2)12SH ratio were found to have an unprecedented miscibility in isotropic 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4-n-octyl-4'-cyanobiphenyl (8CB) liquid crystals exceeding 25 wt% Au. While low NP concentrations are normally used to avoid aggregation, concentrated dispersions of these AuNPs form new structures at the LC phase transitions through coupling of the interparticle attractive forces with the LC elastic interactions. Upon cooling to TN-I, the AuNPs form a reversible, micron-scale network by concentrating at the nematic-isotropic liquid interfaces. The network topology and LC director field orientation are controlled by the cooling rate, surface alignment, film thickness, AuNP concentration and ligand shell composition. Completely different structures are formed at the nematic to smectic phase transition. AuNPs dispersed in homotropically aligned LC films reversibly form macroscopic domains of curved or linear arrays with micron scale periodicities. Based on the variation of the arrays with boundary conditions, AuNPs are proposed to concentrate at the edge dislocation defects in the smectic phase. The molecular interactions that determine the miscibility and assembly of the AuNPs in LCs were studied using multinuclear solid-state NMR and isotopically labeled AuNPs and LCs. The interaction of the host LC with the AuNP surfaces is striking manifested by partial alignment of the ligands. The detection of an isotropic-nematic biphasic region of the host LC matrix below TN-I is an important finding that will be used to refine theoretical models of the network formation. Finally another type of nanoparticle network, formed by aerosil in a Schiff-base-type of LC with a small dipole moment was studied by wideline 2H NMR to investigate the effect of different surface anchoring strengths on the memory effects displayed by these dispersions.Cette Thèse présente la synthèse d'une nouvelle famille de nanoparticules (NPs) d'or enrobées de cristaux liquides (CLs) afin de rationaliser leur miscibilité et assemblage dans des matrices faites de cristaux liquides. Un nouveau protocole basé sur la réaction d'échange de ligand thiol-pour-diméthylaminopyridine (DMAP) a été développé afin de préparer des NPs d'or de 4 à 5 nm de diamètre avec une monocouche simple et binaire faite d'alcanethiol (CH3(CH2)mSH; m = 5, 11) et du ligand CL 4'-(n-mercaptoalkoxy)biphényle-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). Nous avons découvert que les NPs d'or avec un ratio de 1:1 des ligands CH3(CH2)5SH/CBO(CH2)12SH possèdent une miscibilité sans précédent jusqu'à 25% en poids d'or dans la phase isotrope des CLs 4-n-pentyl-4'-cyanobiphényle (5CB) and 4-n-octyl-4'-cyanobiphényle (8CB). Bien qu'une faible concentration en NPs soit normallement utilisée afin d'éviter la formation d'agrégats, les dispersions concentrées de ces NPs d'or forment de nouvelles structures à la tansition de phase du CL par l'entremise du couplage des forces d'attraction interparticulaires avec les intéractions élastiques du CL. En refroidissant à TN-I, les NPs d'or forment de manière réversible un réseau à l'échelle microscopique en se concentrant à l'interphase nématique-isotrope. La topologie et l'orientation du domaine des directeurs CL sont controllées par la vitesse de refroidissement, l'alignement de surface, l'épaisseur du film, et la concentration et composition de la monocouche des NPs d'or. Des structures tout à fait différentes sont formées à la transition de phase nématique à smectique. Les NPs d'or dispersées dans des films de CLs alignés homotropiquement forment de manière réversible des domaines macroscopique de rayures parallèles courbées ou droites ayant une périodicité microscopique. Selon la variation des rayures en function des limites de surface, nous proposons que les NPs d'or se concentrent aux défauts des dislocations coin dans la phase smectique.Les intéractions moléculaires qui déterminent la miscibilité et l'assemblage des NPs d'or dans des CLs ont été étudiées avec l'aide la RMN multinucléaire à l'état solide, et de NPs d'or et CLs marqués isotopiquement. L'intéraction de la matrice CL avec la surface des NPs d'or se manisfeste de manière surprenante par l'alignement partielle des ligands. La détection d'une région biphasique isotrope-nématique de la matrice CL en-dessous de TN-I est une découverte importante qui va être utilisée afin de perfectionner les modèles thèoriques de la formation de réseaux. Finallement, un autre modèle de réseau fait de NPs, formé à partir de la dispersion d'aérosil dans un CL base de Shiff et ayant un moment dipolaire faible, a été étudié par la RMN du 2H. Nous avons examiné l'impact qu'a différentes forces d'ancrage de surface sur l'effet mémoire qu'affiche ces dispersions.McGill UniversityLinda G Reven (Internal/Supervisor)2012Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Doctor of Philosophy (Department of Chemistry) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106294