Improving image classification by co-training with multi-modal features
We explore the use of co-training to improve the performance of image classification in the setting where multiple classifiers are used and several types of features are available. Features are assigned to classifiers in an optimal manner using hierarchical clustering with a distance metric based on...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2011
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104797 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.104797 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1047972014-02-13T03:48:52ZImproving image classification by co-training with multi-modal featuresWeston, KyleApplied Sciences - Artificial IntelligenceWe explore the use of co-training to improve the performance of image classification in the setting where multiple classifiers are used and several types of features are available. Features are assigned to classifiers in an optimal manner using hierarchical clustering with a distance metric based on conditional mutual information. The effect of increasing the number of classifiers is then evaluated by co-training using the assigned feature sets. Experimental results indicate that the feature assignments chosen by the clustering approach afford superior co-training performance in comparison to other logical assignment choices. The results also indicate that increasing the number of classifiers beyond two leads to improved performance provided that the classifiers are sufficiently independent, and are reasonable well balanced in terms of labeling ability.Additionally, we explore the effect that the initial training set selectionhas on co-training performance. We find that the quality of training imageshas a profound effect on performance and provide recommendations for howbest to select these images.Nous explorons l'utilisation de la co-formation pour améliorer la performance de classification d'image dans un milieu où multiples classificateurs s'emploient et plusieurs types de caractéristiques sont disponibles. Les caractéristiques sont associés aux classificateurs d'une manière optimal en employant le groupage hiérarchique avec une mesure de distance basée sur l'information mutuelle conditionnelle. L'effet d'augmenter le nombre de classificateurs est alors evalué par la co-formation, en employant les ensembles de caractéristiques attribués. Les résultats de nos expériences indique que si on augmente le nombre de classificateurs au-delà de deux, la performance s'améliore pourvu que les caractéristiques soient suffisamment indépendantes et assez bien équilibrées en termes de compétence d'étiquetage. En plus, nous explorons l'effet de l'ensemble choisi pour l'entraînement initial sur la performance en co-formation. Nous trouvons que la qualité d'images dans l'entraînement a un effet profond sur la performance, et nous fournissons des recommandations sur comment sélectionner ces images pour le meilleur effet.McGill UniversityMartin D Levine (Internal/Supervisor)2011Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Engineering (Department of Electrical and Computer Engineering) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104797 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Applied Sciences - Artificial Intelligence |
spellingShingle |
Applied Sciences - Artificial Intelligence Weston, Kyle Improving image classification by co-training with multi-modal features |
description |
We explore the use of co-training to improve the performance of image classification in the setting where multiple classifiers are used and several types of features are available. Features are assigned to classifiers in an optimal manner using hierarchical clustering with a distance metric based on conditional mutual information. The effect of increasing the number of classifiers is then evaluated by co-training using the assigned feature sets. Experimental results indicate that the feature assignments chosen by the clustering approach afford superior co-training performance in comparison to other logical assignment choices. The results also indicate that increasing the number of classifiers beyond two leads to improved performance provided that the classifiers are sufficiently independent, and are reasonable well balanced in terms of labeling ability.Additionally, we explore the effect that the initial training set selectionhas on co-training performance. We find that the quality of training imageshas a profound effect on performance and provide recommendations for howbest to select these images. === Nous explorons l'utilisation de la co-formation pour améliorer la performance de classification d'image dans un milieu où multiples classificateurs s'emploient et plusieurs types de caractéristiques sont disponibles. Les caractéristiques sont associés aux classificateurs d'une manière optimal en employant le groupage hiérarchique avec une mesure de distance basée sur l'information mutuelle conditionnelle. L'effet d'augmenter le nombre de classificateurs est alors evalué par la co-formation, en employant les ensembles de caractéristiques attribués. Les résultats de nos expériences indique que si on augmente le nombre de classificateurs au-delà de deux, la performance s'améliore pourvu que les caractéristiques soient suffisamment indépendantes et assez bien équilibrées en termes de compétence d'étiquetage. En plus, nous explorons l'effet de l'ensemble choisi pour l'entraînement initial sur la performance en co-formation. Nous trouvons que la qualité d'images dans l'entraînement a un effet profond sur la performance, et nous fournissons des recommandations sur comment sélectionner ces images pour le meilleur effet. |
author2 |
Martin D Levine (Internal/Supervisor) |
author_facet |
Martin D Levine (Internal/Supervisor) Weston, Kyle |
author |
Weston, Kyle |
author_sort |
Weston, Kyle |
title |
Improving image classification by co-training with multi-modal features |
title_short |
Improving image classification by co-training with multi-modal features |
title_full |
Improving image classification by co-training with multi-modal features |
title_fullStr |
Improving image classification by co-training with multi-modal features |
title_full_unstemmed |
Improving image classification by co-training with multi-modal features |
title_sort |
improving image classification by co-training with multi-modal features |
publisher |
McGill University |
publishDate |
2011 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104797 |
work_keys_str_mv |
AT westonkyle improvingimageclassificationbycotrainingwithmultimodalfeatures |
_version_ |
1716639479664476160 |