Modeling and experimental analysis of carbon exchange from artificially flooded forest and peatland ecosystems

Development of hydroelectricity in recent years has stirred an international debate in relation to greenhouse gas (GHG) emissions caused by flooding, which results from the creation of hydroelectric reservoirs. The debate focuses on whether hydroelectric reservoirs are negligible global GHG sources,...

Full description

Bibliographic Details
Main Author: Kim, Youngil
Other Authors: Nigel Thomas Roulet (Supervisor)
Format: Others
Language:en
Published: McGill University 2011
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104706
Description
Summary:Development of hydroelectricity in recent years has stirred an international debate in relation to greenhouse gas (GHG) emissions caused by flooding, which results from the creation of hydroelectric reservoirs. The debate focuses on whether hydroelectric reservoirs are negligible global GHG sources, particularly with regards to carbon dioxide (CO₂) and methane (CH₄). Most carbon (C) exchange studies applied to hydroelectric reservoirs have been based on irregular or sporadic field measurements and, therefore, hardly address the transient nature of reservoir C flux and the heterogeneity in flux that occurs across different types of ecosystems inundated with water. In this context, ecosystem modeling and laboratory experiments can improve our understanding of C exchange that takes place in flooded terrestrial ecosystems as a consequence of hydroelectric development. The aim of this research was to examine C exchange variation in boreal forest and peatland ecosystems prior to and after flooding as well as to project boreal ecosystem C exchange for the duration of the inundation period. The primary study area was the Eastmain-1 reservoir located in northern Quebec where impoundment was completed in 2006. For this research, a reservoir C model (FF-DNDC) was developed by modifying Forest-DNDC, a process-based biogeochemical model utilized for forest and wetland ecosystems. FF-DNDC was designed to replicate C processes that take place in submerged soil and the water column. It is used to simulate CO₂ flux in flooded boreal forest and peatland ecosystems. The reliability of the Forest-DNDC simulation in relation to CO₂ flux in black spruce forest and peatland ecosystems was tested before modifications to the software took place. This test showed that Forest-DNDC reasonably simulated CO₂ flux and, as a result, supported the application of the model to simulate C dynamic changes after flooding occurs. Short-term incubation experiments using boreal soil and vegetation samples revealed that flooding decreased rates of CO₂ production but increased rates of dissolved C production. The experiments quantified changes that occurred in C mineralization rates prior to and after flooding, which determined soil decomposition parameters under flooded conditions that were then applied to FF-DNDC. The Eastmain-1 reservoir flooded ecosystem simulations detected CO2 emissions from the water surface, and, hence, the direction in CO₂ flux changed (from uptake to release) in comparison to flux that occurred in natural forest and peatland ecosystems. Simulated CO₂ flux for both the flooded forest and peatland ecosystems decreased with the duration of inundation, and the forest ecosystem showed larger CO₂ flux than the peatland ecosystem in the first decade after flooding was initiated. The trend of larger flux in the forest ecosystem was reversed after the first decade. Modeling and experimental results from this study emphasize the importance of spatial and temporal variation of C exchange in newly flooded boreal landscapes. === La production d'hydroelectricite est devenue le sujet d'un debat international ces dernieres annees en raison de l'emission des gaz a effet de serre (GES) qui resulte de l'inondation de la zone en amont d'un barrage hydroelectrique lors de la creation du reservoir. Le debat vise a determiner si les reservoirs des barrages hydroelectriques sont des sources negligeables de GES, plus particulierement en relation avec le dioxyde de carbone (CO₂) et le methane (CH₄). La plupart des etudes sur les echanges carboniques dans les reservoirs hydroelectriques furent basees sur des mesures irregulieres ou sporadiques prises sur terrain, et consequemment elles n'examinent pas en profondeur les tendances transitoires des flux de carbone (C) des reservoirs, ni l'heterogeneite des flux a travers les differents types d'ecosystemes inondes. Ceci etant dit, la modelisation des ecosystemes ainsi que les experimentations de laboratoire pourront ameliorer notre comprehension quant a l'inondation des echanges carboniques des ecosystemes terrestres qui surviennent suite au developpement hydroelectrique. Ma recherche vise a examiner l'alteration des echanges carboniques dans les forets boreales et les tourbieres avant et apres leur inondation, ainsi qu'a prevoir les echanges carboniques des ecosystemes boreals pendant la duree de l'inondation. La region sous etude fut le reservoir Eastmain-1 au nord du Quebec, dont la creation du reservoir fut terminee en 2006. Pour cette recherche, j'ai cree un modele sur le C des reservoirs (FF-DNDC) en modifiant Forest-DNDC, un modele de processus biogeochimique destine aux forets et les milieux humides. FF-DNDC a ete concu pour simuler les processus carboniques dans les sols inondes ainsi que dans la colonne d'eau, et a ete utilise pour predire les flux de CO₂ dans les forets boreales inondees et les tourbieres. Avant la modification du logiciel, j'ai teste la fiabilite avec laquelle Forest-DNDC pourra simuler les flux de CO₂ dans les forets d'epinette noire et les tourbieres. Ce test a demontre que Forest-DNDC peut simuler les flux de CO₂ avec une grande precision, et peut donc etre utilise pour evaluer les dynamiques de C suivant leur inondation. Des experiences d'incubation a court terme utilisant des sols boreals et de la vegetation ont revele que l'inondation diminue les taux de production de CO₂, tout en augmentant les taux de production de C dissous. Les experiences ont quantifie les changements dans les taux de mineralisation du C avant et apres l'inondation, afin de determiner les parametres de decomposition des sols dans les conditions inondees; ces parametres furent ensuite utilises dans FF-DNDC. Les simulations des ecosystemes inondes dans le reservoir Eastmain-1 ont indique qu'il y avait une emission de CO₂ des surfaces d'eau, et donc que la direction des flux de CO₂ a change (allant d'une absorption a une emission par l'ecosysteme) compare aux flux chez les forets et les tourbieres naturelles. Les flux de CO₂ simules dans la foret inondee et la tourbiere diminuaient pendant la duree de l'inondation, et la foret avait des flux de CO₂ superieurs a ceux de la tourbiere pendant la premiere decennie de l'inondation. Par la suite, ce contraste s'est inverse. Les resultats de mes modelisations et experiences mettent en evidence l'importance des variations spatiales et temporelles des echanges carboniques dans les paysages boreals nouvellement inondes.