Smoothing Parameter Selection For A New Regression Estimator For Non-Negative Data
In this thesis, the CV selection technique is applied into Chaubey, Laib and Sen (2008)'s estimator, which is a new regression estimation for nonnegative random variables. The estimator is based on a generalization of Hille's lemma and a perturbation idea. The first and second order MSE ar...
Main Author: | He, Baohua |
---|---|
Format: | Others |
Published: |
2009
|
Online Access: | http://spectrum.library.concordia.ca/976444/1/MR63095.pdf He, Baohua <http://spectrum.library.concordia.ca/view/creators/He=3ABaohua=3A=3A.html> (2009) Smoothing Parameter Selection For A New Regression Estimator For Non-Negative Data. Masters thesis, Concordia University. |
Similar Items
-
Parameter estimation on zero-inflated negative binomial regression with right truncated data
by: Seyed Ehsan Saffari, et al.
Published: (2012) -
Smooth regression quantile estimation
by: Yu, Keming
Published: (1996) -
The estimation of regression parameters with censored data
by: Wu, Meihui, et al.
Published: (1997) -
Penalized spline estimator with multi smoothing parameters in bi-response multi-predictor nonparametric regression model for longitudinal data
by: Anna Islamiyati, et al.
Published: (2020-08-01) -
Double Smoothing of Kernel Estimator in Nonparametric Regression
by: Lu Chih-Lung, et al.
Published: (2002)