Design and development of new tactile softness displays for minimally invasive surgery
Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue,...
Main Author: | |
---|---|
Format: | Others |
Published: |
2008
|
Online Access: | http://spectrum.library.concordia.ca/975870/1/MR40921.pdf Ramezanifard, Mohammadreza <http://spectrum.library.concordia.ca/view/creators/Ramezanifard=3AMohammadreza=3A=3A.html> (2008) Design and development of new tactile softness displays for minimally invasive surgery. Masters thesis, Concordia University. |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMG.975870 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMG.9758702013-10-22T03:47:51Z Design and development of new tactile softness displays for minimally invasive surgery Ramezanifard, Mohammadreza Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue, such as detection of embedded lump and softness characterization is important in MIS. The present study aims to develop tactile feedback systems both graphically and physically. In graphical rendering approach, the proposed system receives signals from the previously fabricated piezoelectric softness sensors which are integrated with an MIS grasper. After processing the signals, the tactile information is displayed by means of a color coding method. Using the graphical images, the softness of the grasped objects can visually be differentiated. A physical tactile display system is also designed and fabricated. This system simulates non-linear material properties of different soft objects. The system consists of a linear actuator, force and position sensors and processing software. A PID controller is used to control the motion of a linear actuator according to the properties of the simulated material and applied force. Graphical method was also examined to render the tactile information of embedded lumps within a soft tissue/object. The necessary information on the size and location of the hidden features are collected using sensorized MIS graspers. The information is then processed and graphically rendered to the surgeon. Using the proposed system surgeons can identify presence, location and approximate size of hidden lumps by grasping the target object with a reasonable accuracy. Finally, in order to determine the softness of the grasped object, another novel approach is taken by the design and fabrication of a smart endoscopic tool equipped with sensors for measuring the applied force and the angle of the grasper jaws. Using this method, the softness/compliance of the grasped object can be estimated and presented to the surgeon 2008 Thesis NonPeerReviewed application/pdf http://spectrum.library.concordia.ca/975870/1/MR40921.pdf Ramezanifard, Mohammadreza <http://spectrum.library.concordia.ca/view/creators/Ramezanifard=3AMohammadreza=3A=3A.html> (2008) Design and development of new tactile softness displays for minimally invasive surgery. Masters thesis, Concordia University. http://spectrum.library.concordia.ca/975870/ |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
description |
Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue, such as detection of embedded lump and softness characterization is important in MIS. The present study aims to develop tactile feedback systems both graphically and physically. In graphical rendering approach, the proposed system receives signals from the previously fabricated piezoelectric softness sensors which are integrated with an MIS grasper. After processing the signals, the tactile information is displayed by means of a color coding method. Using the graphical images, the softness of the grasped objects can visually be differentiated. A physical tactile display system is also designed and fabricated. This system simulates non-linear material properties of different soft objects. The system consists of a linear actuator, force and position sensors and processing software. A PID controller is used to control the motion of a linear actuator according to the properties of the simulated material and applied force. Graphical method was also examined to render the tactile information of embedded lumps within a soft tissue/object. The necessary information on the size and location of the hidden features are collected using sensorized MIS graspers. The information is then processed and graphically rendered to the surgeon. Using the proposed system surgeons can identify presence, location and approximate size of hidden lumps by grasping the target object with a reasonable accuracy. Finally, in order to determine the softness of the grasped object, another novel approach is taken by the design and fabrication of a smart endoscopic tool equipped with sensors for measuring the applied force and the angle of the grasper jaws. Using this method, the softness/compliance of the grasped object can be estimated and presented to the surgeon |
author |
Ramezanifard, Mohammadreza |
spellingShingle |
Ramezanifard, Mohammadreza Design and development of new tactile softness displays for minimally invasive surgery |
author_facet |
Ramezanifard, Mohammadreza |
author_sort |
Ramezanifard, Mohammadreza |
title |
Design and development of new tactile softness displays for minimally invasive surgery |
title_short |
Design and development of new tactile softness displays for minimally invasive surgery |
title_full |
Design and development of new tactile softness displays for minimally invasive surgery |
title_fullStr |
Design and development of new tactile softness displays for minimally invasive surgery |
title_full_unstemmed |
Design and development of new tactile softness displays for minimally invasive surgery |
title_sort |
design and development of new tactile softness displays for minimally invasive surgery |
publishDate |
2008 |
url |
http://spectrum.library.concordia.ca/975870/1/MR40921.pdf Ramezanifard, Mohammadreza <http://spectrum.library.concordia.ca/view/creators/Ramezanifard=3AMohammadreza=3A=3A.html> (2008) Design and development of new tactile softness displays for minimally invasive surgery. Masters thesis, Concordia University. |
work_keys_str_mv |
AT ramezanifardmohammadreza designanddevelopmentofnewtactilesoftnessdisplaysforminimallyinvasivesurgery |
_version_ |
1716608021879062528 |